
Lab Slides

Human Sorter

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1

Design a real computer to do quicksort
Read textbook 7.3 2.3 4.3.3 5.3.3

⚫ However, this computer is made of a team of students

⚫ Students act as data and hardware components

⚫ Process

1. Form teams, each consisting of no more than 30 students and a

team leader who serves the team

2. Every student designs her/his own human sorter computer

3. Each team decides on a design based on member designs

4. Field run of the team design

5. Team leader presents to the class

⚫ Grading policy

⚫ Every student hands in a lab report

⚫ Total = Team leader’s presentation ×10% + Student’s report ×90%

2

How to do it?

⚫ Read 7.3, 2.3, 4.3.3, 5.3.3

⚫ Use your imagination, but note the following
⚫ Design a Human sorter rather an electronic von Neumann computer

⚫ The two may have many possibilities of similarities and differences

3

Five features of the von Neumann

Model of Computer (Textbook 2.3)

Human Sorter

1. Binary representation Not necessarily

2. P-M-I/O organization May ignore I/O; P-M may have different

organizations

3. Stored program The program is not necessarily stored in

memory, but in the Controller’s brain

4. Instruction driven Yes. May include powerful instructions,

such as generating a random number in

one instruction

5. Sequential execution Yes

Objective

⚫ Design a team computer of students to execute a

quicksort program, to sort the students in the team

from name order to height order

4

Criteria of each student’s design

⚫ A good lab report must include

⚫ The team computer organization

⚫ What components are used to form a computer system

⚫ The instruction set of the team computer

⚫ The quicksort program made of a sequence of such instructions

⚫ The evaluation record of program executions

⚫ Should include at least two executions, to show consistent results

5

Criteria of each student’s design

⚫ The evaluation must show that the design satisfies three

correctness properties:
⚫ Result correctness: the students are indeed ordered by height

⚫ Algorithmic correctness: the execution implements the quicksort algorithm

⚫ Systems correctness: the team computer executes the program

sequentially, i.e., step-by-step, one instruction after another
⚫ Instruction-driven: every one in Data Group, NO ORDER NO MOVE!

⚫ Serial execution: the next instruction starts only when the current instruction finishes.

6

Suggested structure of Lab report

⚫ The lab report needs to include the

1. Hardware design

2. Instruction set design

3. Quicksort program

4. Summary of experiment (at least two executions)

⚫ Input and initial configuration

⚫ Output and final configuration

⚫ Number of steps executed

⚫ Total execution time of an execution (wall clock time)

⚫ Comments on distinct features of your design, and other observations

5. Appendix: records of executions and other evidence

7

Sample contents in Lab report

⚫ Hardware design
⚫ Use students and simple additional aids

⚫ E.g., paper marks on the lawn. Note: do not litter

⚫ Instruction set design
⚫ The instruction set consists of 9 instructions (or 7, 12, 15)

⚫ Assume the program is stored in the Controller’s brain, who can control

the execution of any instruction in one step

8

Component Implemented by Duty of the component

Controller 1 student
Decode instruction, control other components to execute instruction,

and determine next instruction

… … …

Opcode Operand1 Operand2 Operand3 Explanatory remarks

MOV
Immediate

value
Register1 None

Set Register1 to the Immediate value

E.g., MOV 0, R1 means 0→R1

… … … … …

Sample contents in Lab report

⚫ The “assembly language” program of quicksort
⚫ E.g., my program is shown in the following table, which consists of a

sequence of 12 instructions

⚫ Record of execution (of 129 steps)

9

No. Instruction Explanatory Comments

1 MOV 17, R1 Initialize R1 to N, the number of data items to be sorted

… … …

12 HALT The program terminates. The sorted result is in the Operational Unit

Step Instruction Executed Explanatory Comments

0 Initial configuration Students of the data group are orded by name; N=16

1 MOV 17, R1 Initialize R1 to N, the number of data items to be sorted

2 … …

… … …

… … Start of the first iteration of the main loop

… … …; comparison #1; …

… … …

129 Halt End of program; the data group are now ordered by height

Suggestions for team presentation

⚫ Highlight the team design

⚫ Highlight two executions in field runs

⚫ Present evidence for three correctness properties:

⚫ Result correctness

⚫ Algorithmic correctness

⚫ Systems correctness

⚫ Present observations on notable features and happenings in

experiment

⚫ Use photographs, videos, and tables to present the

experiment

10

Sample Q&A

⚫ Q: Why bother doing this team sorter project?

⚫ After all, if the quicksort algorithm is correct and the input is

correct, the resulting output must be correct.

⚫ A: This project deepens understanding of algorithmic

thinking and systems thinking

⚫ By doing human computation step-by-step personally,

students will experience and appreciate the following

① Time complexity O(𝑁log2𝑁) matters.

⚫ When N=10, 𝑁log2𝑁=34; When N=30, 𝑁log2𝑁=148

⚫ The team of students could become tired when N>15

② Knuth’s 5-point characterization of algorithms

⚫ A human computer could perform powerful instructions and violate the 5-th criteria

(Effectiveness)

11

Sample Q&A

⚫ Q: Why bother doing this team sorter project?

⚫ Assumption: if the quicksort algorithm is correct and the

input is correct, the resulting output must be correct.

⚫ Right? No!

⚫ A: This project deepens understanding of algorithmic

thinking and systems thinking
③ The assumption in the question is incorrect. Given correct algorithm and

input, a computer can generate a wrong output.

⚫ E. g., a human computer tends to violate the instruction-driven property, and data

could move proactively without following commands (as found in the field run)

④ The environment could affect program execution

⚫ Often discovered in the field run

12

Appendix

Some students may need more hints or help.

The following slides illustrate parts of a design.

Many other imaginative designs are possible,

to realize the key concept of recursion.

13

Hardware design

⚫ Data Group：A, B, C, D, E, F

⚫ Registers：L, R

⚫ L = 1, R = 6

⚫ Others: Controller, Monitor, Overseer, Stepper

⚫ Not shown in this slice

14

Name：A B C D E F

L R

Instruction set design

15

Opcode Operand1 Operand2 Explanatory remarks

select label1 label2

Select the leftmost area as large as possible where

everyone is standing. Let L = index of the leftmost, R =

index of the rightmost.

If L equals to R, jump to label1.

If no such area exists, jump to label2.

pivot
Randomly select a student in [L, R] as the pivot. The

pivot needs to hold the flag up.

partition

Adjust students in [L, R] so that students taller than the

pivot are on the right side of the pivot, and students

shorter than the pivot are on the left side of the pivot.

squat

Within [L,R]：
• Let the student holding the flag (pivot) lay the flag

down, and squat;

• If no one holding the flag, let all students squat.

goto label1 Jump to label1.

halt
All students in data group stand up and the program

terminates.

Quicksort Program
in “assembly”

Initial configuration:

Students of the data group are sorted by name;

L=R=1 (point to the leftmost data)

L1: select L4, L6 # select a area; L = index of the leftmost, R = index of

the rightmost in the selected area

if L equals to R, jump to L4

if no area found, jump to L6

L2: pivot # select a pivot

L3: partition # partition the selected area

L4: squat # pivot squats. If no pivot, all students in [L, R] squat

L5: goto L1 # jump to L1

L6: halt # the program terminates
16

A B C D E F

L R

Step 1:

Select a area

L = 1, R = 6

A B C D E F

L R

A B C D E F

L R

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 2:

Select a pivot

C is selected as the pivot, and C holds the flag up.

A B C D E F

L R

A B C D E F

L
R

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 3:

Partition

A BC D EF

L R

A B C D E F

L R

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Adjust students in [L, R], students

• taller than the pivot are on the right side of the pivot

• shorter than the pivot are on the left side of the pivot

L and R keep unchanged

Step 4:

Squat

Let the student holding the flag (C) lay the flag

down and squat

A BC D EF

L

A BC D EF

R

L R

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 5:

Jump

Jump to L1

Data group, L and R keep unchanged

A BC D EF

L R

A BC D EF

L
R

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 6:

Select a area

Select a new area

L equals to R, jump to L4

A BC D EF

L R

A BC D EF

L R

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 7:

Squat

A BC D EF

L R

A BC D EF

L R

No one in [L, R] holds the flag up, so let all

students (F) squat

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 8:

Jump

A BC D EF

L R

A BC D EF

L R

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Jump to L1

Data group, L and R keep unchanged

Step 9:

Select a area

L = 3, R = 6

A BC D EF

RL

A BC D EF

RLL1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 10:

Select a pivot

E is selected as the pivot

A BC D EF

RL

A BC D EF

RL
L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 11:

Partition

L

A BC D EF

R

L

A BC DEF

R

Adjust students in [L, R], students

• taller than E are on the right side of E

• shorter than E are on the left side of E

L and R keep unchanged

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 12:

Squat

E lays the flag down and squats

L

A BC DEF

R

L

A BC DEF

R

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 13:

Jump

L

A BC DEF

R

L

A BC DEF

R

Jump to L1

Data group, L and R keep unchanged

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 14:

Select a area

L = 3, R = 4

L

A BC DEF

R

L

A BC DEF

R
L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 15:

Select a pivot

L

A BC DEF

R

L

A BC DEF

R

E is selected as the pivot

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 16:

Partition

L

A BC DEF

R

L

A BC DEF

R
L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Adjust students in [L, R], students

• taller than B are on the right side of B

• shorter than B are on the left side of B

L and R keep unchanged

Step 17:

Squat

L

A BC DEF

R

L

A BC DEF

R

B lays the flag down and squats

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 18:

Jump

L

A BC DEF

R

L

A BC DEF

R

Jump to L1

Data group, L and R keep unchanged

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 19:

Select a area

L

A BC DEF

R

L

A BC DEF

RL1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Select a new area

L equals to R, jump to L4

Step 20:

Squat

L

A BC DEF

R

L

A BC DEF

R

A squats

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 21:

Jump

L

A BC DEF

R

L

A BC DEF

R

Jump to L1

Data group, L and R keep unchanged

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 22:

Select a area

L = R = 6, jump to L4

L R

L

A BC DEF

R

A BC DEF

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 23:

Squat

D squats

L

A BC DEF

R

L

A BC DEF

RL1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 24:

Jump

L

A BC DEF

R

L

A BC DEF

R

Jump to L1

Data group, L and R keep unchanged

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 25:

Select a area

Because all students in data group squat, jump to L6

L

A BC DEF

R

L

A BC DEF

R
L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Step 26:

Jump

All students in data group stand up

and the program terminates.

L

A BC DEF

R

L

A BC DEF

R
L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Revisit partition：
What happens when there are 100 students?

A BC D EF

A B C D E F

L R

L R

99 students are needed to compare with the pivot at one step, which will

cause disorder!!

Pairwise comparison

A is higher than C and needs to move to the right side of C

A B C D E F

L R

A C

A B C D E F

L R

A C

How A move to the right side of C?

Does the position of the others in data group change?

Do the values of L and R change?

Pairwise comparison

Hardware design

⚫ Data Group: A, B, C, D, E, F

⚫ Registers: L, R, P
⚫ L = P = 1, R = 6

⚫ Others: Controller, Monitor, Overseer, Stepper

⚫ Not shown in this slice

46

Name：A B C D E F

L RP

Improve the design

47

Instruction set design

48

⚫ Original instructions:

⚫ partition is deleted

Opcode Operand1 Operand2 Explanatory remarks

select label1 label2

Select the leftmost area as large as possible

where everyone is standing, let L = P = index of

the leftmost, R = index of the rightmost.

If L equals to R, jump to label 1.

If no such area exists, jump to label2.

pivot
Random select a student in [L, R] as the pivot. The

pivot need hold the flag up.

squat

Within [L,R]：
• Let the student holding the flag (pivot) lay the

flag down, and squat;

• If no one holding the flag, let all students squat.

goto label1 Jump to label1.

halt
All students in data group stand up and the

program terminates.

Instruction set design

49

Opcode Operand1 Operand2 Explanatory remarks

cmp label1 label2

If P equals to R, jump to label1;

If the student that P points to is not shorter than

the student that R points to, jump to label2.

inc reg reg = reg + 1

swap reg1 reg2
Swap the students that reg1 and reg2 point to.

reg1 could be “flag”, which points to the pivot.

⚫ New instructions

Improved

Quicksort Program

L1: select L10, L12 # select a area

L2: pivot # select a pivot

L3: swap flag, R # swap the pivot to where R point to

L4: cmp L9, L7 # if P equals to R, jump to L9;

If the student that P points to is not shorter

than the student that R points to, jump to L7

L5: swap P, L # swap the students that P and L point to

L6: inc L # L = L + 1

L7: inc P # P = P + 1

L8: goto L4 # jump to L4

L9: swap flag, L # swap the pivot to where R point to

L10: squat # squat

L11: goto L1 # jump to L1

L12: halt # All students stand up and the program halts.
50

C is the pivot, L = P = 1, R = 6

A B C D E F

L RP

Compare the Two

Quicksort Programs
L1: select L10, L12

L2: pivot

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

L10: squat

L11: goto L1

L12: halt

51

L1: select L4, L6

L2: pivot

L3: partition

L4: squat

L5: goto L1

L6: halt

Code in the box implements the partition instruction

The following slices show how to complete one partition

Step 3:

Swap

The pivot C is swapped to R

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

A B C D E F

L RP

A B CD EF

L RP

Already executed：
Step 1: select a area

Step 2: select a pivot

Step 4:

Compare

P ≠ R and A is taller than C, jump to L7

A C

A B CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 5:

P moves 1 position to right

A B CD EF

L RP

A B CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 6:

Jump

Jump to L4

L, P, R and data group keep unchanged

A B CD EF

L RP

A B CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 7:

Compare
A B CD EF

L RP

B C

P ≠ R and B is taller than C, jump to L7

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 8:

P moves 1 position to right

A B CD EF

L RP

A B CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 9:

Jump

A B CD EF

L RP

A B CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Jump to L4

L, P, R and data group keep unchanged

Step 10:

Compare
A B CD EF

L RP

F C

P ≠ R and F is shorter than C, execute the next

instruction in sequence (L5)

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 11:

Swap

Swap A and F

A B CD EF

L RP

AB CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 12:

L moves 1 position to right

AB CD EF

L RP

AB CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 13:

P moves 1 position to right

F B CD EA

L RP

AB CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 14:

Jump
F B CD EA

L RP

AB CD EF

L RP
L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Jump to L4.

L, P, R and data group keep unchanged.

Step 15:

Compare
F B CD EA

L RP

D C

P ≠ R, D is taller than C, jump to L7

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 16:

P moves 1 position to right

F B CD EA

L RP

AB CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 17:

Jump

AB CD EF

L RP

AB CD EF

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Jump to L4.

L, P, R and data group keep unchanged.

Step 18:

Compare
F B CD EA

L RP

E C

P ≠ R and E is taller than C, jump to L7

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 19:

P moves 1 position to right

F B CD EA

L RP

F B CD EA

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 20:

Jump

F B CD EA

L RP

F B CD EA

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Jump to L4.

L, P, R and data group keep unchanged.

Step 21:

Compare

P = R, jump to L9

F B CD EA

L RP

F B CD EA

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Step 22:

Partition completed

F BC D EA

L RP

F B CD EA

L RP

L3: swap flag, R

L4: cmp L9, L7

L5: swap P, L

L6: inc L

L7: inc P

L8: goto L4

L9: swap flag, L

Swap the pivot to L, partition is completed.

