
1

Lab Slides

Personal Artifact

CS101

2

Reference

⚫ https://www.w3schools.com/

⚫ An online tutorial

⚫ http://cs101.ucas.edu.cn/file/Personal_Artifact/

⚫ The directory containing related code in this project

https://www.w3schools.com/
http://cs101.ucas.edu.cn/file/Personal_Artifact/

Examples – Combined with your Major

3

Langton's_Ant.html

⚫ "Langton’s Ant" is a
game in mathematics.

Examples – Good Programming

4

Fibonacci.html

⚫ The webpage shows a fibonacci curve

⚫ The programming practices is good

Examples – Good Programming

5

// code executed directly:

var len = 14; // the number of Fibonicaii numbers to form the Curve (Global variable)

var fibonaciiArray = new Array(len); // Fibonicaii numbers to form the Curve

calculate_fibnacii();

drawFibonacciArc();

// function definition:

function calculate_fibnacii(){

fibonaciiArray[0] = 1; fibonaciiArray[1] = 1;

for(var i=2;i<len;i++) fibonaciiArray[i]=fibonaciiArray[i-1]+fibonaciiArray[i-2];

}

function drawFibonacciArc(){

// show the whole curve by draw many 1/4 circles

var canvas = document.getElementById("myCanvas"); // get Canvas

var ctx = canvas.getContext("2d");

var x0 = 400, y0 = 200;

var x = x0, y = y0, startDegree = 0, endDegree = 90;

for (var i = 0; i < len; i++) {

// Draw 1/4 Circle whose radius is fibonaciiNumber[i]

var radius = fibonaciiArray[i];

ctx.beginPath();

ctx.strokeStyle = "black";

ctx.arc(x,y,radius,(startDegree/180)*Math.PI,(endDegree/180)*Math.PI);

ctx.stroke();

// update the position of the center of next 1/4 circle

var direction = startDegree/90;

if(i<len-1){

var inc_x = (direction%2-2*Math.floor(direction/3))*(fibonaciiArray[i+1]-fibonaciiArray[i]);

var inc_y = -(1-direction+2*Math.floor(direction/3))*(fibonaciiArray[i+1]-fibonaciiArray[i]);

x += inc_x; y += inc_y;

}

// update the range of degrees of next 1/4 circle

startDegree = (startDegree+90)%360;

endDegree = (endDegree+90)%360;

};

}

⚫ Put constant definitions up

front.

⚫ Use descriptive names

⚫ Avoid repetitive code

⚫ Use comments to

document the code

⚫ Avoid magic numbers

Examples – Tips

6

// code executed directly:

var len = 14; // the number of Fibonicaii numbers to form the Curve (Global variable)

var fibonaciiArray = new Array(len); // Fibonicaii numbers to form the Curve

calculate_fibnacii();

drawFibonacciArc();

// function definition:

function calculate_fibnacii(){

fibonaciiArray[0] = 1; fibonaciiArray[1] = 1;

for(var i=2;i<len;i++) fibonaciiArray[i]=fibonaciiArray[i-1]+fibonaciiArray[i-2];

}

function drawFibonacciArc(){

// show the whole curve by draw many 1/4 circles

var canvas = document.getElementById("myCanvas"); // get Canvas

var ctx = canvas.getContext("2d");

var x0 = 400, y0 = 200;

var x = x0, y = y0, startDegree = 0, endDegree = 90;

for (var i = 0; i < len; i++) {

// Draw 1/4 Circle whose radius is fibonaciiNumber[i]

var radius = fibonaciiArray[i];

ctx.beginPath();

ctx.strokeStyle = "black";

ctx.arc(x,y,radius,(startDegree/180)*Math.PI,(endDegree/180)*Math.PI);

ctx.stroke();

// update the position of the center of next 1/4 circle

var direction = startDegree/90;

if(i<len-1){

var inc_x = (direction%2-2*Math.floor(direction/3))*(fibonaciiArray[i+1]-fibonaciiArray[i]);

var inc_y = -(1-direction+2*Math.floor(direction/3))*(fibonaciiArray[i+1]-fibonaciiArray[i]);

x += inc_x; y += inc_y;

}

// update the range of degrees of next 1/4 circle

startDegree = (startDegree+90)%360;

endDegree = (endDegree+90)%360;

};

}

⚫ Canvas
1. canvas =

document.getElementById("…")
2. ctx = canvas.getContext("2d")
3. ctx.XXX()
4. ctx.stroke()

Lab Objective

⚫ Design a dynamic webpage of creative expression.
Successful completion of this personal artifact needs
students to demonstrate their self-learning capability.

⚫ Each student needs to produce and show to the class a
webpage:

⚫ A dynamic webpage including HTML, CSS, and JavaScript code
⚫ as well as other hyperlinked files,

⚫ which shows your creative expression

7

Outline

8

⚫ Section 1: Make a static webpage
⚫ HTML Structure
⚫ HTML Grammar

⚫ Section 2: Make a web calculator
⚫ Change the result of the web calculator
⚫ Read input operands
⚫ Perform the selected computation

⚫ Section 3: Make a web clock
⚫ Add a static clock
⚫ Make the clock dynamic
⚫ Debug
⚫ Compare JS with Go

This course will take "Tom"
making a web clock and
calculator as an example to
introduce related
programming knowledge

9

Section 1

CS101

In this section, we will make the following
webpage

10
blog1.html

Section 1 Outline

⚫ HTML Structure

⚫ HTML Grammar
HTML is the abbreviation of
HyperText Markup Language,
which describes what a webpage
has

11

HTML Structure

<html>

<head>

some code

</head>

<body>

some code

</body>

</html>

Note the existence of "/“!

12

Any html code begins with

this basic structure

HTML Structure—example

Create a new file named blog.html, type the following code to
that file:
[the meaning of the code will be discussed later]
<html>

<head>
<meta charset="UTF-8" >
<title>A Good Day</title>

</head>
<body>

<h1>The growing diary of calculator and clock</h1>
</body>

</html>
open blog.html with a Web browser

13

<h1>The growing diary of calculator and clock</h1>

<title>A Good Day</title>

14

HTML Structure—example

⚫ Any html source code file takes ".html" as filename
extension
<html> html start tag

<head> head start tag

<meta charset="UTF-8"> meta tag: specify the encoding

<title>A Good Day</title> a pair of title tags: the title (name) of
the webpage is inside the two tags

</head> head end tag

<body> body start tag

<h1>The growing diary of calculator and clock</h1> h1 tag: the
words shown in the webpage

</body> body end tag

</html> html end tag

head
element

body
element

utf-8 is an
encoding
for text

15

Section 1 Outline

⚫ HTML Structure

⚫ HTML Grammar

16

HTML Grammar—Summary

⚫ Markup Language: HTML is a markup language, which
consists of many tags (for example,
<html>,</html>,<head>,</head>,<body>,</body>)

⚫ Nesting is allowed: A pair of tags can be defined inside
another pair of tags. For example, inside <html>…</html>,
<head>…</head> and <body>…</body> are defined, <meta>
and <title> are defined inside <head>…</head>,
<h1>…</h1> is defined inside <body>…</body>

⚫ Differ from Go: Go is a programming language, and a Go
program mainly consists of manipulation of digital symbols;
however, HTML is used to specify the content of a webpage

17

HTML Grammar—concept

⚫ Tag: HTML tag is a word that has the pattern "<keyword>",
such as <html>

⚫ Most HTML tags appear in pairs, following the pattern of
<keyword>…</keyword>, e.g. <h1>…</h1>. The former <h1> is
called start tag; the later </h1> is called end tag (Note the /)

⚫ Attribute: HTML start tag can have attributes. An attribute’s
value is a string enclosed in quotation marks. The grammar of
attribute is:

<h1 attribute_name="…">…</h1>

⚫ Element: "<key_word>…</key_word>" is a HTML element:

<h1>The growing diary of …</h1> element
tag

18

HTML Grammar—elements in <head>

⚫ Inside <head>…</head>, the <meta> tag and a pair of
<title> tag usually appear, e.g.,

⚫ Their meanings are:

Tag Meaning

<meta charset="UTF-8"> Specify the usage of utf-8 encoding

<title>…</title> Specify the title (name) of the webpage

<head>

<meta charset="UTF-8">

<title>The Title</title>

</head>

Namespace: legal strings
allowed by browser (Chinese
words, English words and
space are legal, and multiple
spaces will be merged to one
space)

19

Add headings and subheadings

⚫ Tom wants to talk about the creation process, so his blog
consists of three parts and each part has a head. The
three heads are "Before", "During" and "After". He uses
the following knowledge:

• <h1>Words</h1>

• <h2>Words</h2>

• <h3>Words</h3>

• <h4>Words</h4>

• <h5>Words</h5>

• <h6>Words</h6>

b
ein

g sm
aller

20

<html>
<head>

<meta charset="UTF-8">
<title>A Good Day</title>

</head>
<body>

<h1>The growing diary of
calculator and clock</h1>

<h2>Before</h2>
<h2>During</h2>
<h2>After</h2>

</body>
</html>

Code: Result:

21

Add paragraph—paragraph, newline,
horizontal line, comment

⚫ After Tom adds subheads, he begins to write paragraphs
below each subhead, hoping that there are empty lines
between paragraphs. The knowledge he uses is as
follows:

Paragraph: <p>text</p>

Newline:
（or
）

Horizontal line: <hr/>（or <hr>）

Comment: <!--comment_content-->

22

<body>
<h1>The growing diary of calculator and

clock</h1>
<h2>Before</h2>
<p>Before doing it, I am not sure I can

make it.</p>

<hr>
<h2>During</h2>
<p>During doing it, I find some material,

tired but happy.</p>

<hr>
<h2>After</h2>
<p>Finally, it's done. Although it's rough,

it's also my own 'son'.</p>
</body>

Code (body only):

Result:

23

Add Name and Time—text formatting

⚫ After adding paragraphs, Tom wants to write his name
and time to his blog. The name should be italicized with a
small star, and the time should be italicized. Text
Formatting tags are used.

⚫ Text formatting tags usually appear in pairs, and specify the
format of the text between the two tags.

• Bold: bold text

• Italic: <i>italic text</i>

• Superscript: ^{superscript text}

• Subscript: _{subscript text}

24

<body>
<h1>The growing diary of calculator

and clock</h1>
Author: <i>Tom</i>

[*] Time: <i>2020/02/26</i>
<h2>Before</h2>
<p>Before doing it, I am not sure I can

make it.</p>

<hr>
<h2>During</h2>
<p>During doing it, I find some

material, tired but happy.</p>

<hr>
<h2>After</h2>
<p>Finally, it's done. Although it's

rough, it's also my own 'son'.</p>
</body>

Code (body only):
Result:

25

Add progress chart—table

⚫ After Tom adds name and time, he looks back on his process of
creating his blog and wants to record the process in a table. The
knowledge he uses is:
⚫ A table can be defined by <table>…</table>, inside which n rows can be

defined by n <tr>…</tr>. Inside a <tr>…</tr>, m cells can be defined by m
<td>…</td>. The text inside <td>…</td> will be displayed in the cell defined
by the two tags.

⚫ An example:

<table>

<tr><td>(row0,col0)</td><td>(row0,col1)</td></tr>

<tr><td>(row1,col0)</td><td>(row1,col1)</td></tr>

</table>

26

<table border="1">
Table: Tom's hard journey
<tr>

<td>Event</td><td>Feeling</td>
</tr>
<tr>

<td>Learn CSS</td><td>One day awake</td>
</tr>
<tr>

<td>Learn HTML</td><td>One day awake again</td>
</tr>
<tr>

<td>Learn JavaScript</td><td>Missing Go</td>
</tr>

</table>

Code ("During" part):
Result: The line thickness of

of table border

27

Add purpose—ordered list

⚫ Tom realizes that the "Before" part of his blog is still empty, so he
writes his purpose of writing the webpage in an ordered list:
⚫ Ordered list is defined by …, inside which an element in the list can

be defined by … which contains the text of the list element in the
middle. The order number of elements in an ordered list is automatically
added when the list is displayed in a browser.

Text

Text

Replace
…with

… can delete
the order numbers.

28

Code ("Before" part):
Result:

List: Tom's Purpose

Learn CSS
Learn HTML
Learn JS
Make calculator and

clock

<!--br-->

29

Add calculator—form

⚫ Tom, after adding his purpose in a list, wants to display a
calculator in his blog, so he designs the appearance of the
calculator with "form" in HTML.

⚫ Form is composed of <form>…</form>, inside which some
single <input> tag can be used to define some kinds of Form
Element.

⚫ Form is used to capture user’s input and Form Elements are
usually text box where user can enter text, or option where
user can select it.

30

Add calculator—form element
⚫ Different <input> elements can be distinguished by their

type attributes

Grammar Description

<input type="text"> A text box where user enters text.

<input type="password"> A text box where user enters password
which will be displayed as many dots.

<input type="radio" name="xx"> A radio. If many radios in a form have the
same name attribute, only one can be
selected.

<input type="checkbox"> A checkbox.

<input type="button" value="xx"> A Button(the value of value attribute is the
text on the button when displayed)

31

Code ("After" part):

Result:

Calculator:
<form>

Operands1: <input type="text">

Operands2: <input type="text">

<input type="radio" name="op">Add
<input type="radio" name="op">Sub
<input type="radio" name="op">Mul
<input type="radio" name="op">Div
<input type="radio" name="op">Mod

<input type="button" value="Compute">

</form> • Note: Only Appearance
of Calculator, no functions.

Radios with the same name attribute inside
a <form>…</form>is a group (a group means
only one of the group can be selected)

32

HTML Grammar—Block & Inline Elements

⚫ Thinking what to write next in his blog, Tom finds the following
knowledge:

⚫ In a webpage, some HTML elements can be embedded in a line,
such as <i>…</i>. Elements with this property are called Inline
Elements. On the contrary, elements like <h1>...</h1> must
start with a new line, and these elements are called Block
Elements.

⚫ Examples:
⚫ <div>…</div>: A block element which has no special meaning, and just

divides a webpage into smaller blocks, making operations on all
elements in such a block easier.

⚫ …: An inline element which has no special meaning. It
can be used to combine some elements in the same line or embed some
elements in a line to make operations on the embedded part more
easier.

33

Code Blocking—division tag

⚫ Tom thinks the code is a little bit messy, so he uses <div>
to make the three parts in his blog into three <div>
elements, which makes the arrangement of the code
better.

<body>
……
<div>

<h2>Before</h2>
……

</div>
……
<div>

<h2>After</h2>
……

</div>
</body>

• Adding <div> just changes the
structure of code, but the
webpage displayed in a
browser is not changed.

34

Leave space for calculator results—span tag

⚫ Suddenly a strategy comes to Tom’s mind: the result in the
calculator can be added using in the <form>

Calculator:
<form>

Operands1: <input type="text">

Operands2: <input type="text">

<input type="radio" name="op">Add
<input type="radio" name="op">Sub
<input type="radio" name="op">Mul
<input type="radio" name="op">Div
<input type="radio" name="op">Mod

Result: xxxx

<input type="button" value="Compute">

</form>

Result:

35

Add Styles

⚫ Tom starts to think about how to make his webpage
more beautiful, so he learns CSS
⚫ CSS(Cascading Style Sheets) is a language specifying the

styles(e.g. font color, background color) of HTML elements. Its
statements has the form of "name: value;".

⚫ An HTML file has two methods to insert CSS statements.

⚫ Method 1: Style attribute in start tag. The value of the
attribute is some CSS statements.
⚫ Example:

<p style="background-color: gold;">a paragraph with golden background</p>
<p style="color: red;">a paragraph with red font color</p>

⚫ You can specify more than one styles at the same time:
<h1 style="color: blue; text-align: center;">a blue and centered heading</h1>

Note: the names and values in a CSS statements cannot be arbitrary strings, but
the ones defined by CSS grammar.

36

<h1 style="background-color: gold;">The growing diary of calculator
and clock</h1>

Author: <i style="color: purple;">Tom</i> [*]
Time: <i style="color: purple;">2020/02/26</i>

Add color to elements

Result:

37

Add color to elements

⚫ Tom thinks his blog is not good enough, so he wants to make
the three parts (Before, During, After) more beautiful. He uses
the following knowledge:

⚫ Method 2: Inside <head>…</head>, <style>…</style> can be
defined, within which some CSS statements can appear.

⚫ Example:

<style>

h1 {color: red;} /* Specify the style of a kind of tag: All <h1> elements have red fonts*/

id_attribute {color: green;} /* Specify the style of an element: The element
specified by the id attribute [learn later] has green fonts*/

.class_attribute {color: yellow;} /* Specify the style of a group of elements: The
elements with the same class attributes [learn later] have yellow fonts*/

</style>

Select some elements and change their styles by CSS statements in the
curly braces

38

Some Common Attributes

⚫ Almost all elements can define the following attributes:

⚫ Grammar:
⚫ <tag_name attribute1_name="…" attribute2_name="…" >…</tag_name>

Attribute Description

id Identifier of an element. Unique. Can be any string.

name Name of an element. Can be any string.

class Class of an element. One element can have multiple class.
Different elements can have the same class. Can be any string.

style The style of an element.

39

<body>
……
<div id="before">

……
</div>
<div id="during">

……
</div>
<div id="after">

……
</div>

</body>

Add Attributes

• id attribute cannot change the
appearance of the webpage,
but can be selected by CSS code
inside <style>…</style>

40

<style>
#before {

background-color: skyblue;
}
#during {

background-color: springgreen;
}
#after {

background-color: tomato;
}
h2 {

background-color: violet;
}

</style>

Add color
Result:

No white space between #
and before

41

42

Section 2

CS101

43
blog2.html

In this section, we will make the following
webpage

Where to insert JavaScript code

<html>
<head>

<meta charset="UTF-8">
<title>A Good Day</title>

</head>
<body>
……(HTML part)

<script>
…
</script>

</body>
</html>

JavaScript part

44

Section 2 Outline

⚫ Change the result of the web calculator

⚫ JavaScript object representing an HTML element

⚫ Read input operands

⚫ JavaScript "onclick" event

⚫ Perform the selected computation

⚫ JavaScript Array object

⚫ JavaScript for-loop

45

JavaScript Programming—Object

⚫ Object can be seen as a compound data type, and it is a set of

properties and methods, for example, a person can be a object,

who has properties such as height, weight, age and gender, and

methods such as walking, running and talking.

⚫ The dot notation "." is used to access the properties and methods
of an object.

⚫ The properties of an object: like variables
⚫ obj.property

⚫ The methods of an object: like functions (methods)
⚫ obj.method();

46

JavaScript Programming — Object
representing an HTML element

⚫ In order to implement the calculator, Tom firstly needs to know
how to modify the result of the calculator, so he learns the
knowledge of JS accessing HTML elements.

⚫ JS can take defined HTML elements as object to access it (2 steps):
1. Get the HTML element by its id attribute

⚫ var x = document.getElementById("p1");

▪ the return value of document.getElementById("p1") is the object representing the HTML
element whose id attribute has the value "p1"

▪ therefore, x is the HTML element whose id attribute has the value "p1"

2. Access the attributes of HTML elements with the object representing this HTML
elements

⚫ x.innerHTML = "newContent";

▪ set the innerHTML attribute of the HTML element represented by x to "newContent"

▪ the content between the tags of the HTML element whose id attribute is "p1" becomes
"newContent"

⚫ The 2 steps can be realized by one statement:
⚫ document.getElementById("p1").id = "newContent";

47

Change Result

48

<script>
var z = 101;
var result =document.getElementById("result");
result.innerHTML = z;

</script>

Code:

Result:

Section 2 Outline

⚫ Change the result of the web calculator

⚫ JavaScript object representing an HTML element

⚫ Read input operands

⚫ JavaScript "onclick" event

⚫ Perform the selected computation

⚫ JavaScript Array object

⚫ JavaScript for-loop

49

JavaScript Programming—event

⚫ After Tom learns how to change the result of the calculator, he
also needs to implement: Read the input numbers when the
button is clicked. Therefore, He learns the knowledge of event:

⚫ 3 Common events:

⚫ User click a button(<input type="button" onclick="JS code">)

⚫ User change his/her input(<input type="text" oninput="JS code">)

⚫ The browser completely loads a webpage (<script> window.onload = a
function definition </script>）

⚫ When an event happens, a JS code can be used to tackle the
event.

50

Add event

⚫ The "JS code" of onclick attribute is usually a function

invocation statement. The code can be:

51

Code:
…
<input type="button" value="Compute"
onclick="run_calculater()">
…
<script>

function run_calculater(){
var operand1 =

document.getElementById('operand1').value - 0;
var operand2 =

document.getElementById('operand2').value - 0;
var z = operand1 + operand2;
document.getElementById('result').innerHTML = z;

}
</script>

Result:

After click “Compute“ button:

Section 2 Outline

⚫ Change the result of the web calculator

⚫ JavaScript object representing an HTML element

⚫ Read input operands

⚫ JavaScript "onclick" event

⚫ Perform the selected computation

⚫ JavaScript Array object

⚫ JavaScript for-loop

52

JavaScript Programming—Array object

⚫ Tom reads the two operands of the calculator successfully, but he
still needs to run the computing process, so he uses an array to
store the five types of computation:
⚫ Create an Array object

var ar = new Array(); // variable ar stores an array (No length specified, just

// assign, the length will be determined automatically)

var ar = ["Java", "Script"]; // create an array using "[]"

var ar = [0, "ABC", [true,false]]; // one array can have different types of elements,

// and the index starts from 0

⚫ Change an element of an array

ar[0]=1;

⚫ Property of an array

var ar=[0,1,2];

var len = ar.length; // len=3, which is the length of the array

53

<script>
…
function add(x,y){ return x+y; } //Add
function sub(x,y){ return x-y; } //Sub
function mul(x,y){ return x*y; } //Mul
function div(x,y){ return x/y; } //Div
function mod(x,y){ return x%y; } //Mod
function run_calculator(){

var operand1 =
document.getElementById('operand1').value - 0;

var operand2 =
document.getElementById('operand2').value - 0;

var function_array = [add, sub, mul, div, mod];
var z = function_array[1](operand1, operand2);
document.getElementById("result").innerHTML=z;

}
</script>

Result:

Use an array of functions

54

After click "Compute" button:

Section 2 Outline

⚫ Change the result of the web calculator

⚫ JavaScript object representing an HTML element

⚫ Read operands user entered

⚫ JavaScript "onclick" event

⚫ Perform the selected computation

⚫ JavaScript Array object

⚫ JavaScript for-loop

55

JavaScript Programming—for loop

⚫ In Tom’s blog, the calculator can only perform one kind of
computation, so it still needs to traverse the five options to
know the option selected by user. Therefore, Tom learns the
knowledge about for loop:

⚫ for loop:

⚫ Similar to for loop in Go, the difference is that there is a pair
of parenthesis after for in JS.

56

for(statement1;expression1;statement2){

//some code

}

Calculator:
<form>

Operands1: <input type="text">

Operands2: <input type="text">

<input type="radio" name="op">Add
<input type="radio" name="op">Sub
<input type="radio" name="op">Mul
<input type="radio" name="op">Div
<input type="radio" name="op">Mod

Result: xxxx

<input type="button" value="Compute">

</form>

Recall the HTML code of the calculator:

Result:

57

function run_calculater(){
…
var function_array = [add, sub, mul, div, mod];
var options = document.getElementsByName("op");
var z;
var is_found = false;
for(var i=0; i<function_array.length && !is_found; i++){

if(options[i].checked == true){
z = function_array[i](operand1, operand2);
is_found = true;

}
}
document.getElementById('result').innerHTML = z;

}

Result:

Traverse array by for loop

After clicking "Compute" button:

58

Section 3

CS101

59

60

blog3.html

In this section, we will make the following
webpage

Section 3 Outline

⚫ Add a static clock

⚫ JavaScript Date object

⚫ Make the clock dynamic

⚫ JavaScript Animation

⚫ Debug

⚫ console.log function

⚫ Compare JS with Go

61

JavaScript Programming—Date object

⚫ After completing the calculator, Tom starts to make a web-
clock, and he wants to show year, month and day in the
clock, so he learns Data object in JS:

⚫ Create a Date object
⚫ var date = new Date(); // Date object in variable date

⚫ var date = new Date; // The parentheses can be omitted

⚫ Use a Date object
⚫ date.getDate(); // return which day in the month (start with 1)

⚫ date.getDay(); // return which day in the week (start with 1, Sunday is 0)

⚫ date.getFullYear(); // return year

⚫ date.getMonth(); // return month (start with 0)

⚫ date.getHours(); // return which hour in the day

⚫ date.getMinutes(); // return which minute in the hour

⚫ date.getSeconds(); // return which second in the minute

62

Add a static clock

<div id="after">
……
Clock:
<p id="clock"></p>
</div>
<script>

……
var date = new Date;
var year = date.getFullYear();
var month = date.getMonth() + 1;
var day = date.getDate();
var hour = date.getHours();
var min = date.getMinutes();
var second = date.getSeconds();
var time = year + "/" + month + "/" + day + " " + hour + ": " + min + ": " + second;
var clock = document.getElementById("clock");
clock.innerHTML = time;

</script>

Result:

get time: year, month,
day, hour, minute, second

when the type of one of the operands is string
, the + operator means string concatenation
(number will be firstly converted to string)

change the content between tags
whose id attribute is "clock"

63

Section 3 Outline

⚫ Add a static clock

⚫ JavaScript Date object

⚫ Make the clock dynamic

⚫ JavaScript animation

⚫ Debug

⚫ console.log function

⚫ Compare JS with Go

64

JavaScript animation

⚫ Tom makes a clock but the clock only shows a time, not a real dynamic
clock. To make the clock run, Tom learns the following function:

⚫ setTimeout function

⚫ Usage: setTimeout(a function name, time(in ms), parameter1,
parameter2,…);

⚫ Meaning: Tell the browse that the function specified by the first
parameter will be executed after the time specified by the second
parameter (parameters start from the third one will be the
parameters of the first parameter)

⚫ Only Tell, not execute. The following code can execute after telling.

⚫ Example:

⚫ var a = 0;

⚫ setTimeout(console.log,1000,a); //After 1000ms, execute console.log(a);

65

run_clock();

function run_clock(){

…(code showing clock)

setTimeout(run_clock, 1000);

}

Result:

• Put the code showing clock in a function that will be
called every 1000ms

call the function only once

Every time the function comes to
an end, it tells the browser that I
will be called after 1000ms.

66

JavaScript animation

⚫ Till now, Tom has completed a web clock, but in fact there
is usually a fault when using setTimeout function

⚫ Another example:

⚫ What will be printed on console?

⚫ Does it sequentially output [0,1,2,3],[1,1,2,3],…,[999,1,2,3]?

var ar=[0,1,2,3];

for(var i=0;i<1000;i++){

setTimeout(console.log, 1000*i, ar);

ar[0]++;

}

67

JavaScript animation

⚫ Console print:

⚫ When an object is the parameter of a function, the address of the object is actually

passed to the function, not a copy of the object.

⚫ setTimeout tells the address of ar object to browser, and there is only one ar, so

after telling browser 1000 times, ar has become [1000,1,2,3].

⚫ Although the time specified by setTimeout has passed, the function (first

parameter of setTimeout) will be executed after the normal code comes to an end.

⚫ So console.log(ar) prints [1000,1,2,3] only.

68

JavaScript animation

⚫ Other examples using setTimeout

⚫ pass number

⚫ pass the copy of number, not address

⚫ After passing the object, we try to change the
value storing the object

⚫ Note that the address of the object is passed

▪ Actually 4 objects is defined and assigned to x
successively

▪ the third parameter in each calling of setTimeout is
different objects

⚫ After passing the object, we try to change the
attribute of the object

⚫ Note that the address of the object is passed

▪ only one object is defined

// the return value of x=4;

// what console.log prints

// the return value of the last setTimeout
// what first console.log prints

// what second console.log prints
// what third console.log prints

// what fourth console.log prints

// the return value of x[0]++;
// what console.log prints

69

JavaScript animation

⚫ Other examples using

setTimeout
⚫ for loop

⚫ Tell the browser that the

increase function will be

executed after 1000ms

⚫ print ar
▪ ar is not changed

because increase has

not executed

⚫ increase function
⚫ execute after 1000ms

⚫ add ar[0] by 1
▪ the ar[0] printed in this

function is increasing

what console.log in
for-loop prints

what console.log
in increase
function prints

70

Section 3 Outline

⚫ Add a static clock

⚫ JavaScript Date object

⚫ Make the clock dynamic

⚫ JavaScript Animation

⚫ Debug

⚫ console.log function

⚫ Compare JS with Go

71

Console

⚫ Each browser has a console, which is similar to terminal.

⚫ Console is the StdIn, StdOut and StdErr when you are debugging

⚫ You can execute JS statements directly in console without an html file

⚫ Open a browser and press F12. The console can be opened.

72

console

Debug: console.log function

⚫ Thanks to the function, Tom can tackle all the bugs in his webpage:

⚫ console.log can print an object
⚫ can print the information of an object (methods, properties）
⚫ the returned value of many JS build-in functions is an object

⚫ when you are not sure the returned value of a function, print it with
console.log.

⚫ The console can execute the JS statements user enters.

⚫ Type the following code on console, press Enter, and see what the
console outputs:
⚫ var ar = ["a", "b", "c"];

⚫ console.log(ar);

⚫ The picture uses Chrome

73

• See the return value of a function

var options =document.getElementsByName("op");
console.log(options);

• Print intermediate variables

var operand1 = document.getElementById("operand1");
var x = operand1.value - 0;
var operand2 = document.getElementById("operand2");
var y = operand2.value - 0;
console.log("x=%d, y=%d", x, y);

//can use %d (round
down),%f,%s and %o(object)

Scene using console.log

74

Section 3 Outline

⚫ Add a static clock

⚫ JavaScript Date object

⚫ Make the clock dynamic

⚫ JavaScript Animation

⚫ Debug

⚫ console.log function

⚫ Compare JS with Go

75

Go vs JS

76

⚫ Key Point

⚫ Go is used to do “local” programming

⚫ Do I/O operation directly

▪ manipulate file on local hard-disk

▪ Read input from terminal directly

▪ Print output to terminal directly

⚫ Access resources locally

⚫ JS is used to do web programming

⚫ Do I/O operation through web browser

▪ output to console that is in web browser

▪ manipulate webpage that is displayed in web browser

⚫ Access resources of WWW

Go vs JS

Go JavaScript

Variable Type is needed, and once declares, the
type cannot change, e.g. var a int = 1

No type, and one variable can be assigned values
of different types successively, e.g. var a=1; a =
“JS”;

Datatype Has array, slice, char type JS does not have slice; JS use object to
implement array; JS does not have char type,
only string type

Function The types of parameters and return value
is needed and a function can have
multiple return values

No need of types of parameters nor return
values. A function can have only one return value.
Function is an object, can form array.

Arithmetic Operator 5/2=2 5.0/2=2.5
3.2 % 0.7 is an compiling error

5/2=2.5
3.2 % 0.7 ≈ 0.4 (lose accuracy)

Comparison
Operator

An Error occurs when compare values of
different types.

When compare by ==(!==), operands of different
types will be converted to the same type
automatically before the comparison.
When compare by ===(!==), the result of
operands of different types is false(true)

Right shift >> A>>B
When A is unsigned, the high bits will be
made up by 0
When A is signed, the high bits will be
made up by the sign-bit

A>>B: the high bits will be made up by 0
A>>>B: the high bits will be made up by the
sign-bit

77

Go vs JS

Go JavaScript

Control flow No parenthesis needed:
if x<10 {

……
}

Parenthesis is necessary:
if (x<10){

……
}

object N/A Array, Date, Object representing HTML
element

Print function fmt.Println, fmt.Printf console.log

Length of array len(array) array.length

Language type Complied language: The source
code should be complied to
executable file which can be
executed later.

Interpreted language: The interpreter
inside browser will interpret and
execute each JS statement

statement No ; needed ; is optional

78

Quicksort Go vs JS

<script>
var ar = new Array();
var n = 1*1024*1024;
for(var i=0; i<n; i++){

ar[i] = Math.floor(Math.random()*1000000);
}
quicksort(ar, 0, ar.length-1);
console.log(" %d\n %d\n %d\n", ar[0], ar[1],

ar[ar.length-1]);
……

• Go

• When create a slice, the length of
the underlying array is needed

• Go can pass slice that has length,
so the index bound of the
unsorted data in the array is not
shown in the parameter list

• fmt.Printf() can output to terminal
directly

• JS

• When create an array, no length is needed

• The different way of generating random
numbers

• JS has no slice, so the index bound should
be passed.

• JS can only output to console which is
embedded in the browser

func main() {
rand.Seed (time.Now().UnixNano())
n : = 1*1024*1024
var da = make([]int,n)
for i: =0; i<n; i++ {

da[i] = rand.Int()
}
quicksort (da[0: n])
fmt.Printf(" %d\n %d\n

%d\n",da[0],da[1],n-1,da[n-1])
}

Math.random() returns a
random number in [0,1)

79

Quicksort Go vs JS

⚫ Go

⚫ it does not need "()"

⚫ array (the variable) is a slice
representing a fragment of the
underlying array (the data type) and
the length of array (the variable) can
be accessed by len(array)

⚫ partition only needs the current
array (the data type) as its
parameters (not the whole array)

function quicksort(ar, left, right){
if (right - left + 1 < 2) {

return;
}
var pivotal_index = partition(ar, left, right);
quicksort(ar, left, pivotal_index-1);
quicksort(ar, pivotal_index+1, right);

}

⚫ JS
• it needs "()"

• Because the index bound of ar is passed
as parameters, the length of the
unsorted data should be computed by
the index bound

• partition also needs index bound as
parameters

func quicksort(array []int) {
if len(array) < 2 {

return
}
left_array, right_array : =

partition(array)
quicksort(left_array)
quicksort(right_array)

}
80

Quicksort Go vs JS

⚫ Go

func partition(array []int) ([]int, []int) {
pivotal_index : = rand.Intn(len(array))
pivotal_value : = array[pivotal_index]
next : = 0
array[pivotal_index], array[len(array)-1] =
array[len(array)-1], array[pivotal_index]

for i: = 0; i < len(array); i++ {
if (array[i] < pivotal_value) {

array[next], array[i] =
array[i], array[next]
next++

}
}
array[next], array[len(array)-1]=
array[len(array)-1], array[next]
return array[0: next], array[next+1: len(array)]

}

function partition(ar, left, right){
var len = right - left + 1;
var pivotal_index =

Math.floor(Math.random()*len) + left;
var pivotal_value = ar[pivotal_index];
var next=left;
// pivotal to last
ar[pivotal_index] = ar[right];
ar[right] = pivotal_value;
// smaller than pivotal : left
for(var i=left; i<=right; i++){

if(ar[i] < pivotal_value) {
// swap
var temp = ar[next];
ar[next] = ar[i];
ar[i] = temp;
next++;

}
}
// swap pivotal back
ar[right] = ar[next];
ar[next] = pivotal_value;
return next;

}

⚫ JS

Random range is [0, len(array)]

Randome range is [left, right]

assign to 2 variables
at the same time

When swap two
values, one should
be stores in
another variable

return two slice
return index

81

Additional Material

CS101

82

Additional Material Outline

⚫ JavaScript variable & function

⚫ JavaScript operator & expression

⚫ JavaScript control flow

⚫ while loop

⚫ if-else statement

⚫ switch-case statement

83

JavaScript Basics—data types

Data type Description Example

Bool Represent true or false; only 2 values: true,
false

true, false

Number 64bit length, represent integers and floating
point numbers, similar to float64 in Golang

-1, 0, 1, 0.1, -0.1

String Represent a string "abc", "" (empty string)

Null type Null belongs to a special type specific to null
Null represents that there is no value

null

Undefined type Undefined belongs to a special type specific
to null
Undefined represents that a value is lacking:
(1) A variable that is not assigned
(2) A function needs arguments, but no
parameters are provided
(3) A function with no return value

undefined

84

JavaScript Programming—variable

⚫ <script> part:

var x,y,z;

var s = "JavaScript";

x = 0;

x = "aaa";

y= true;

z = 1.1;

console.log(x,y,z,s); print multiple variables’ values, and
these variables are separated by comma

variable declaration(no type)

declaration & assignment

variable assignment

variable assignment
(assign different types of values to the same variable)

variable assignment

variable assignment

85

JavaScript Programming—function

⚫ Function definition

⚫ Function invocation

var a=1,b=1;

var z = add(a,b); // z=2;

only one return value while Go can return more than one.

86

function add(x,y){
return x + y;

}

func add(x,y int) int{
return x + y

}
JS: Go:

Additional Material Outline

⚫ JavaScript variable & function

⚫ JavaScript operator & expression

⚫ JavaScript control flow

⚫ while loop

⚫ if-else statement

⚫ switch-case statement

87

JavaScript operator & expression

⚫ Operators that are the same with that in Golang

⚫ +,-,*,++,--

⚫ Operators that are different from that in Golang

⚫ / (division)
⚫ In JS: 3/2=1.5, In Go: 3/2=1 (round down)

⚫ If you want to round down in JS, you need to use Math.floor(3/2)

⚫ % (remainder)
⚫ In JS, operands of % can be real number while Go does not allow it.

⚫ In JS, 3.2 % 0.7 ≈ 0.4(lose precision) while Go does not allow 3.2%0.7

88

JavaScript operator & expression

⚫ JS has not only arithmetic operators, but also almost all the
operators of Go:

⚫ Assignment Operators:
⚫ =, +=, -=, *=, /=, %=
⚫ x op= y equals to x=x op y, for example, x+=y equals to x=x+y

⚫ op can be +,-,*,/,%

⚫ Comparison Operators
⚫ The result of comparison is true or false

⚫ Same as Go: >,>=,<,<=
⚫ Differ from Go: ==,!=,===,!==

▪ when use == or !=, if the types of two operands is different, the two operands
will be transformed to the same type before they are compared.

▪ when use ===(!===), if the types of two operands is different, the result is
false(true)

89

JavaScript operator & expression

⚫ Logical Operators:
⚫ Same as Go: && (And), || (Or), ! (Not)

⚫ Often used in conditional expression

⚫ Eg: if(x<10 && x>0) { … }

⚫ Bitwise Operators:
⚫ Same as Go: & (bitwise and), | (bitwise or), ^ (bitwise nor), ~

(bitwise not), << (left shift)

⚫ Differ from Go: >> (Signed right shift), >>> (Zero fill right shift)

⚫ The operands of a bitwise operator will firstly be transformed to
32-bit integers.

90

JavaScript operator & expression

⚫ Conditional Operator (has three operands)
⚫ condition ? the value when condition is true : the value when

condition is false

⚫ For example: var y = x>0 ? x: -x; //y= the absolute value of x

⚫ String Concatenation Operator
⚫ + (the same as addition)

⚫ when the type of one or two of the two operands of + is string,
the operand whose type is not string will firstly be transformed
to string type before they are concatenated.

⚫ var x = "Java" + "Script"; //x="JavaScript"

⚫ var x = "0" + 1; //x= "01" (1 is transformed to string type)

91

Additional Material Outline

⚫ JavaScript variable & function

⚫ JavaScript operator & expression

⚫ JavaScript control flow

⚫ while loop

⚫ if-else statement

⚫ switch-case statement

92

JavaScript control flow—while loop

⚫ while loop:

⚫ In each iteration: if the expression is true, the loop body is
executed, otherwise the loop is terminated.

while(expression){
// some code

}

93

JavaScript control flow —if-else statement

⚫ if-else statement:

⚫ Similar to Go, but the expression has curly braces

if(expression 1){

//some code

}else if (expression 2){

//some code

}else{

//some code

}

The whole
statement can has
zero or more else-

branches

94

JavaScript control flow—switch-case
statement

switch(expression){
case value1: // some code, executed when expression equals value1
break; // Do not forget break, otherwise all statements following the matched case will execute

// unconditionally until another break is encountered or the end of the switch-case
// statement is reached

case value2: // some code, executed when expression equals value2 but not value1
break;
default: // some code, executed when expression does not equals value2 and value1

//default can be omitted

}

95

⚫ switch-case statement:

⚫ an alternative of if-else statement

