
Algorithmic Thinking
P vs. NP

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1



Outline

⚫ What is algorithmic thinking

⚫ Divide-and-conquer paradigm

⚫ Other interesting paradigms

⚫ P vs. NP

⚫ Time complexity

⚫ P and NP

⚫ NP examples

2



Thinking problem

⚫ Hanoi game

⚫ 2𝑛 − 1 steps

⚫ If there are 4 piles in the Hanoi game, how many 

steps do we need?



Hard problems versus easy problems

⚫ Complexity of an algorithm: total steps run by the 

algorithm 

⚫ Usually consider the worst case

⚫ Example: bubble-sort algorithm, quick-sort algorithm

⚫ Complexity of a problem: the complexity of the best 

algorithm which can solve this problem

⚫ Sorting problem based on comparison: 𝑂(𝑛 log 𝑛)

⚫ Integer multiplication: 𝑂(𝑛 log 𝑛)



Reduction 

⚫ Suppose A and B are two computing tasks

⚫ We can have a reduction from problem A to problem B 

(written as 𝐴 ≤𝑃 𝐵), if

⚫ Given any algorithm which can solve problem B, we can 

“use” this algorithm to solve problem A

⚫ Intuition: A is “easier” than B



Sorting versus Convex-hull

⚫ sorting ≤𝑃 convex-hull

⚫ The input of sorting problem: 𝑥1, 𝑥2, … , 𝑥𝑛 (𝑥𝑖 > 0)

⚫ Construct input for convex-hull problem 

⚫ 𝑃1(𝑥1, 𝑥1
2), 𝑃2(𝑥2, 𝑥2

2), … , 𝑃𝑛(𝑥𝑛 , 𝑥𝑛
2)

Convex-hull



Example of reduction

⚫ Problem A: 

⚫ Determine whether a polynomial equation with integral 

coefficients has integer solutions.

⚫ Problem B: 

⚫ Determine whether a polynomial equation with integral 

coefficients has non-negative integer solutions.

⚫ Examples: 𝑥3 + 𝑦3 = 𝑧3, 𝑥3 + 𝑦3 = 𝑧3 + 𝑢3

⚫ Prove: 𝐴 ≤𝑃 𝐵, 𝐵 ≤𝑃 𝐴



⚫ A ≤P B:

⚫ f (x, y, z) → F(p, q, s, t, u, v) = f (p-q, s-t, u-v) 

⚫ B ≤P A:

⚫ F(x, y) → f(a, b, c, d, p, q, s, t) = F (a2+b2+c2+d2,

p2+q2+s2+t2) 

⚫ 23 = 32 + 32 + 22 + 12

Lagrange
1736~1813

Lagrange four-integer-squares theorem



P vs NP: P

⚫ P class (Polynomial time): we say a problem ∈ 𝑃 if 

there exists an algorithm A to solve such a problem 

with time complexity 𝑂 𝑛𝑐 , where 𝑐 is a constant

⚫ n: input size

⚫ Polynomial time: 𝑂(𝑛), 𝑂(𝑛2), 𝑂(𝑛3), 𝑂(𝑛10000), 𝑂(𝑛2
100
)

⚫ P class ≈ the problems which can be efficiently solved by 

a computer

⚫ Equivalent definition: the tasks which can be solved 

by a Turing machine within polynomial steps



P vs NP: NP

⚫ P: the decision problems which can be solved by a 

deterministic Turing machine in polynomial steps

⚫ NP: the decision problems which can be solved by a 

non-deterministic Turing machine in polynomial 

steps

⚫ An equivalent definition of NP: 

⚫ A decision problem belongs to NP, if its solution can be 

verified by a deterministic Turing machine in polynomial 

steps



P vs NP: NP

⚫ The class NP consists of those problems whose 

answer can be verifiable in polynomial time

⚫ There exists a polynomial time verification algorithm A, for 

any input:

⚫ If the correct answer is YES, then there exists a witness with which 

the algorithm A can accept

⚫ If the correct answer is NO, then no witness can make the algorithm 

A accept

⚫ 𝑃 ⊆ 𝑁𝑃

⚫ No witness is needed for problems in P



Examples of NP

⚫ Given a map, can we color each area with red or 

blue or green so that no adjacent areas have the 

same color? (3-coloring problem)

⚫ Witness: a color assignment

⚫ Verification algorithm: verify that each area is colored with 

red or blue or green; verify that all adjacent areas have 

different colors. 

⚫ Given Boolean formula 𝜙, decide whether there 

exists an assignment so that the value of such 

formula under this assignment is TRUE? (SAT 

problem)

⚫ Witness: an assignment



Examples of NP

⚫ Given a graph, decide whether there exists a 

Hamiltonian cycle. 

⚫ Hamiltonian cycle: a cycle which passes each vertex 

exactly once

⚫ Witness: a cycle

⚫ Given a graph and a parameter 𝑘, decide whether 

there exists a 𝑘-clique.

⚫ Clique: a subset of vertices such that there is an edge 

between every pair of vertices in this subset

⚫ Witness: 𝑘 vertices



P vs NP: NP

⚫ The class NP consists of those problems whose 

answer can be verifiable in polynomial time

⚫ Exist a polynomial time verification algorithm A, for any 

input:

⚫ If the correct answer is YES, then there exists a witness with which 

the algorithm A can accept

⚫ If the correct answer is NO, then no witness can make the algorithm 

A accept

⚫ The length of witness is polynomial over the length of input



NP-completeness

⚫ So far, we do not know whether these examples 

belong to P or not

⚫ 3-coloring problem

⚫ SAT problem

⚫ Hamiltonian problem

⚫ Clique problem

⚫ They are NP-complete problems.

⚫ NP-complete: the hardest problems in NP

⚫ If we find a polynomial time algorithm for any NP-complete 

problem, then all problems in NP have polynomial time 

algorithm, that is, P=NP



Is there any problems outside NP?

⚫ Given 𝑛 × 𝑛 board, two clever players play general 

Go game. Does the player with black always win?

⚫ So far, we do not know whether this problem is in NP or 

not

⚫ Halting problem

⚫ Not in NP

16



Millennium Prize

⚫ Birch and Swinnerton-Dyer Conjecture 

⚫ Hodge Conjecture 

⚫ Navier-Stokes Equations 

⚫ P vs NP 

⚫ Poincaré Conjecture (solved)

⚫ Riemann Hypothesis 

⚫ Yang-Mills Theory

First Clay Mathematics Institute Millennium Prize Announced: 

Prize for Resolution of the Poincaré Conjecture Awarded to Dr. 

Grigoriy Perelman 



⚫ If P ≠ NP

⚫ Cryptography!



Cryptography – one way function

⚫ One-way function

⚫ Cornerstone of cryptography 

⚫ Given 𝑥, it is easy to compute 𝑓(𝑥): in P

⚫ Given 𝑓(𝑥), it is hard to compute 𝑥: not in P

⚫ Is there a one-way function?

⚫ If it exists, we have 𝑃 ≠ 𝑁𝑃



Cryptograph - Integer Factorization Problem

⚫ Integer Factorization Problem

⚫ The most important candidate of one-way function

⚫ Given 𝑝 and 𝑞, it is easy to compute 𝑛 = 𝑝 × 𝑞

⚫ Given 𝑛, it is hard to find 𝑝 and 𝑞 such that 𝑛 = 𝑝 × 𝑞

⚫ Based on this problem

⚫ RSA public key algorithm

⚫ Ron Rivest, Adi Shamir, Leonard Adleman (1977)


