
Algorithmic Thinking
What Is Algorithmic Thinking

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1

Outline

⚫ What is algorithmic thinking

⚫ Knuth's characterization

⚫ Sorting: problem and algorithms

⚫ Asymptotic notations

⚫ Divide-and-conquer paradigm

⚫ Other interesting paradigms

⚫ P vs. NP

These slides acknowledge sources for additional data not cited in the textbook

2

1. What is algorithmic thinking?

⚫ A way of thinking to solving problems smartly by

⚫ designing and using algorithms

⚫ looking at the world through an algorithmic lens

⚫ A smart way to study computational problems and algorithms
Problem Name (e.g., the sorting problem)

⚫ Input: specifying the given input data.

⚫ Output: specifying the desired output data.

Algorithm Name (e.g., bubble sort)

⚫ Input: specifying the given input data.

⚫ Output: specifying the desired output data.

⚫ Steps: specifying the sequence of computational steps.

⚫ What does smart mean?
⚫ A smart way to define algorithms. Knuth’s five-point definition

⚫ A smart way to measure algorithms. 𝒐,𝑶, 𝛀,𝚯 ; P vs. NP

⚫ Smart ways to design algorithms. Algorithmic paradigms

⚫ Smart variations to adapt for problem nuances. E.g., how to balance all parts

3

1.1 What are algorithms

⚫ Derived from Algoritmi de numero Indorum
⚫ Treatise by Persian mathematician Al-Khwarizmi

(780-850 CE)

⚫ Knuth’s characterization (1968)
An algorithm is a finite set of rules specifying a sequence of

computational steps for solving a given problem, with the

following five properties.

⚫ Finiteness. An algorithm must always terminate after a finite

number of steps.

⚫ Definiteness. Each step of an algorithm must be precisely defined,

that is, the actions to be carried out must be rigorously and

unambiguously specified.

⚫ Input. An algorithm has zero or more inputs, given before the

algorithm begins or during the algorithm's execution.

⚫ Output. An algorithm has one or more outputs, which relate to the

inputs.

⚫ Effectiveness. Every operation of an algorithm must be sufficiently

rudimentary, such that in principle, the operation can be done by a

human using paper and pencil, in finite time.

https://www-cs-faculty.stanford

.edu/~knuth/alk3.gif

https://www-cs-faculty.stanford

.edu/~knuth/zoomlunch.jpg (2020)

Algorithm vs. non-algorithm

The common divisor (CD) problem

⚫ Input: Two positive integers x and y.

⚫ Output: A positive integer z such that x % z = 0 and y % z = 0.

Method 1 (CD-1), randomly pick and check

⚫ Input: Two positive integers x and y.

⚫ Output: A positive integer z such that x % z = 0 and y % z = 0.

⚫ Steps:

while true

randomly pick a positive integer z

if (x % z == 0) and (y % z == 0) then halt

⚫ CD-1 is not an algorithm, as it violates some of the 5 properties

⚫ May never stop, violating the finiteness property

⚫ “Randomly picking a positive integer" is not sufficiently rigorous or unambiguous,

violating the definiteness property

⚫ How does one do it from the set of infinitely many positive integers?

5

Algorithm vs. non-algorithm

The common divisor (CD) problem

⚫ Input: Two positive integers x and y.

⚫ Output: A positive integer z such that x % z = 0 and y % z = 0.

Method 2 (CD-2): Euclid's algorithm

⚫ Input: Two positive integers x and y.

⚫ Output: A positive integer z such that x % z = 0 and y % z = 0.

⚫ Steps:

while y  0

x, y = y, x % y

z = x

⚫ Exercises

⚫ Show that CD-2 is indeed an algorithm, because it satisfies all 5 properties in

Knuth’s characterization

⚫ Show that given two inputs x=36 and y=24, Euclid's algorithm finds the greatest

common divisor of x and y, i.e., gcd(x, y)=12

6

Divisors of x = 36

36, 18,12, 9, 6, 4, 3,

2, 1

Divisors of y = 24

12, 8, 6, 4, 3, 2, 1

Common divisors

of x = 36 and y = 24

12, 6, 4, 3, 2, 1

GCD of

x = 36 and y = 24

12

1.2 Example: the sorting problem

⚫ Task: given 𝑛 integers, sort them in order from

smallest to largest

⚫ Think: when you play cards, how do you arrange

your cards?

⚫ Draw the cards one by one, and insert them into the

arranged cards each time

⚫ Sort by suit first, and then sort each suit

⚫ Other methods?

Bubble-sort

76

18

99

35

12

76

18

99

12

35

76

18

12

99

35

76

12

18

99

35

12

76

18

99

35

Continue sorting

this part

12

18

76

35

99

Bubble-sort

12

76

18

99

35

12

76

18

35

99

12

76

18

35

99

12

18

76

35

99

Continue sorting

this part

Bubble sort meets Knuth’s characterization

⚫ Finiteness: the double loop always terminates

⚫ Definiteness: the meaning of each step is clear

⚫ Input: array A (of length n) to be sorted

⚫ Output: the sorted array A, sharing space with Input

⚫ Effectiveness: basic operations are comparison and swap

⚫ Both operations are sufficiently rudimentary

⚫ People can use pen and paper to do these operations accurately

10

Input: An array A of length 𝑛 to be sorted, e.g., A=[6, 2, 4, 1, 5, 9].

Output: A sorted array A, e.g., A=[1, 2, 4, 5, 6, 9].

Steps:

for i = 1 to n-1 // for each round

for j = 1 to n-i // compare every adjacent pair

 if A [j] > A [j + 1] then exchange A [j] with A [j + 1];

Bubble-sort

⚫ Need 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑛 × (𝑛 − 1)/2
comparison operations

⚫ In the worst case, need 𝑛 × (𝑛 − 1)/2 swap

operations

⚫ 𝑛, 𝑛 − 1,… , 2, 1

⚫ Can we improve the algorithm?

Quick-sort

2
10

1

9
8

5

3

6

Step 1: random choose one element as the key

Step 2: compare other elements with the key,

and divide all elements into two parts

2
101

9

8
5

3 6

Step 3: sort each part recursively

p, r = n, 1

QuickSort(A, p, r)

If p < r

1. q = Partition(A, p, r)

2. QuickSort(A, p, q-1)

3. QuickSort(A, q+1, r)

Quick-sort

6 1 8 2 3 9105

Key element: 6 6 1 8 2 3 9105

6 1 3 2 8 9105

5 1 3 2 8 9106

Quick-sort

⚫ How many comparison operations do we need?

⚫ Worst case: 𝑛 × (𝑛 − 1)/2
⚫ When?

⚫ Average case: ?

p, r = n, 1

QuickSort(A, p, r)

If p < r

1. q = Partition(A, p, r)

2. QuickSort(A, p, q-1)

3. QuickSort(A, q+1, r)

Human sorter

⚫ Design a team computer for quicksort

⚫ Each student needs to design their own human

sorter

⚫ After discussion and evaluation, each team chooses

one design, and runs it in reality

Thinking problem

⚫ Pancake Sorting problem

⚫ Sort a disordered stack of

pancakes in order of size

when a spatula can be

inserted at any point in the

stack and used to flip all

pancakes above it.

⚫ Goal: minimize the number

of flip operations

Pancake Sorting problem

⚫ 2, 1, 4, 5, 3

⚫ 5, 4, 1, 2, 3

⚫ 3, 2, 1, 4, 5

⚫ 1, 2, 3, 4, 5

