
Overview
Computational Thinking

Without: ABC

Within: Acu-Exams

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1

Outline

⚫ CS & CT study computational processes

⚫ Three features without: ABC

⚫ Eight understandings within: Acu-Exams

⚫ CS & CT are a synergy

⚫ Reminder

⚫ Set up your computer for programming by next week

⚫ Use programs this week

⚫ Start to do programming next week

These slides acknowledge sources for additional data not cited in the textbook

2

1. What are CS and CT?

⚫ Computer science (CS) is the study of computational

processes

⚫ for problem solving and creative expression

⚫ that are correct, smart, and practical

⚫ CS combines

⚫ logic, algorithmic, systems thinking, and

⚫ network thinking

⚫ Computational thinking (CT) is the way of thinking

underlying the computer science discipline

⚫ ABC features without (looking from the outside)

⚫ Acu-Exams understandings within (looking inside)

3

1.1 Computational process

⚫ A step-by-step process of information transformation

⚫ A sequence of symbol manipulation steps

⚫ Can be done manually or automatically

⚫ Compute Fibonacci number F(10)
⚫ Given definition

F(0)=0, F(1)=1,

F(n)=F(n-1)+F(n-2)

when n>1,

Find F(10).

⚫ Manual
⚫ Tedious

⚫ Impractical for large n

⚫ Computer
⚫ Automatic after

encoding into cyberspace

⚫ Practical even for

n = 1 billion

4

1.2 Problem solving

by PEPS

⚫ Compute Fibonacci

number F(10)

⚫ Problem:

▪ Given definition, find F(10).

⚫ Encoding:

▪ A recursive algorithm

⚫ Computational Process

▪ Embodied in fib-10.go

⚫ Computer System

5

Demo

HLL program

Executable program, low-level language program, binary code

2. ABC features without

⚫ Automatic execution

⚫ Bit accuracy

⚫ Constructive abstraction

⚫ They form a synergy of information transformation,

thus differs from other disciplines

⚫ Abstraction in CS is automatically executed and bit

accurate abstraction

⚫ Logic in CS emphasizes automatically executed and bit

accurate logic reasoning

⚫ Algorithm emphasizes automatically executed, bit accurate,

and efficient methods of computation

6

2.1 Automatic execution

⚫ Demo of executing fib-10.go

7

~> cat fib-10.go

package main // Program setup

import "fmt"

func main() {

fmt.Println("F(10)=", fibonacci(10)) // Output F(10)

}

func fibonacci(n int) int { // fibonacci(10)

if n == 0 || n == 1 { // If n=0 OR n=1, (|| means OR)

return n // return n and exit

}

return fibonacci(n-1)+fibonacci(n-2) // Recursive calls

}

~> go build fib-10.go compile fib-10.go

~> ./fib-10 execute binary code fib-10 (immediately finishes)

F(10)= 55 display output

~>

Some details

⚫ "F(10)“

is changed to

"F(50)"

⚫ "fibonacci(10)"

is changed to

"fibonacci(50)"

⚫ // Output F(10)“

is changed to

"// Output F(50)“

⚫ "10“

is changed to

"50"

8

package main // Program setup

import "fmt"

func main() {

fmt.Println("F(10)=", fibonacci(10)) // Output F(10)

}

func fibonacci(n int) int { // fibonacci(10)

if n == 0 || n == 1 { // If n=0 OR n=1, (|| means OR)

return n // return n and exit

} // Recursively call

return fibonacci(n-1)+fibonacci(n-2) // fibonacci(9) and fibonac-ci(8)

}

> go build fib-10.go

> ./fib-10

F(10)= 55

>

(a) F(10)= 55

(b) F(10)= 12586269025

(c) F(50)= 55

(d) F(50)= 12586269025

Automatic execution

⚫ Demo of executing fib-50.go

9

~> cat fib-50.go

package main // Program setup

import "fmt"

func main() {

fmt.Println("F(50)=", fibonacci(50)) // Output F(50)

}

func fibonacci(n int) int { // fibonacci(50)

if n == 0 || n == 1 { // If n=0 OR n=1, (|| means OR)

return n // return n and exit

}

return fibonacci(n-1)+fibonacci(n-2) // Recursive calls

}

~> go run fib-50.go compile and execute fib-50.go (wait for ~1 minute)

F(50)= 12586269025 display output

~>

Automatic execution

⚫ Demo of executing fib-50.go

⚫ Repeat for fib-100.go and see what happens
⚫ Terribly slow, and produce a wrong result

⚫ due to overflow (result too big to be held in a 64-bit integer)
10

~> cat fib-50.go

package main // Program setup

import "fmt"

func main() {

fmt.Println("F(50)=", fibonacci(50)) // Output F(50)

}

func fibonacci(n int) int { // fibonacci(50)

if n == 0 || n == 1 { // If n=0 OR n=1, (|| means OR)

return n // return n and exit

}

return fibonacci(n-1)+fibonacci(n-2) // Recursive calls

}

~> go run fib-50.go compile and execute fib-50.go (wait for ~1 minute)

F(50)= 12586269025 display output

~>

2.2 Bit accuracy

⚫ Other sciences pursue their own scientific rigor
⚫ Experiments results are statistically significant when the

p-value is less than 0.05

⚫ The error is no more than 3 Angstrom (Å = 0.1 nm)

⚫ The results are precise up to two digits after the decimal point

⚫ Computer science uses binary values of 0s and 1s

⚫ One binary digit is called a bit

⚫ Computer science pursues bit accuracy
⚫ A computational process is accurate and precise up to every bit

⚫ Any practical computer has finite memory

▪ Cannot represent real numbers of arbitrary precision

11

The “dinosaur data sets” phenomenon

12

Justin Matejka and George Fitzmaurice. (2017). Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through
Simulated Annealing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 1290-1294.

⚫ These data sets are the same but different

⚫ show quite different graphs (varied appearance), but

⚫ have the same statistics (up to two digits after the decimal point)

Bit accuracy

⚫ Fib-50.go is

slow

⚫ Use Binet’s

formula to

compute F(50)

⚫ Involve real

numbers, or

floating-point

numbers

13

Bit accuracy

⚫ Demo of fib.binet-50.go, fib.binet-100.go, fib.binet-500.go

14

~> go run fib.binet-50.go compile and execute (immediately finishes)

F(50)= 1.2586269024999998e+10 display output

~> go run fib.binet-100.go compile and execute (immediately finishes)

F(100)= 3.542248481792618e+20 display output

~> go run fib.binet-500.go compile and execute (immediately finishes)

F(500)= 1.3942322456169767e+104 display output

The floating-point numbers have only 16 significant digits,

resulting in round-off errors

F(50) = 1.2586269024999998e+10 = 1258 6269 024.9 99998

F(50) = 1258 6269 025

F(100) = 3.542 2484 8179 2618 e+20= 3542 2484 8179 2618 00000

F(100) = 3542 2484 8179 2619 15075

F(500) = 1.3942322456169767e+104

= 1394 2322 4561 6976 7000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000

F(500) = 1394 2322 4561 6978 8013 9724 3828 7040 7283 9500 7025 6587 6973

0726 4108 9629 4832 5571 6228 6329 0691 5576 5887 6222 5212 94125

2.3 Constructive abstraction

⚫ Computer science is about digital abstractions
⚫ constructive, automatically executed abstractions of information

transformation

⚫ Three layers of meaning
⚫ Abstraction from concrete instances to the general concept

⚫ Constructive: a step-by-step integration of more primitive symbols and

operations

⚫ Smart construction, not ad hoc, arbitrary actions or processes

⚫ Although may use brute-force actions (e.g., exhaustive enumeration) and

seemingly arbitrary random operations (e.g., randomly picking a number)

⚫ Abstraction example: recursive function

15

func fibonacci(n int) int {

if n == 0 || n == 1 {

return n

}

return fibonacci(n-1)+fibonacci(n-2)

}

Layer-1 meaning
Abstraction from concrete instances to the general concept

⚫ From concrete instances

to general concept

of function

⚫ Function definition

⚫ A function takes input

and returns output

⚫ Parameter is also called argument

⚫ Function call

16

func fibonacci(n int) int {

if n == 0 || n == 1 {

return n

}

return fibonacci(n-1)+fibonacci(n-2)

}

fmt.Println(fibonacci(10))

func quicksort(A []int) {

if len(A) < 2 {

return

}

lowerA, upperA := partition(A)

quicksort(lowerA)

quicksort(upperA)

}

quicksort(arrayX)

Instance-1: fibonacci Instance-2: quicksort

func functionName(parameters) returnType {

functionBody

}

functionName(actualParameters) // function call

Layer-2 meaning
Constructive: a step-by-step integration of more primitive entities

⚫ From concrete instances

to general concept

of four-part function

17

func fibonacci(n int) int {

if n == 0 || n == 1 {

return n

}

return fibonacci(n-1)+fibonacci(n-2)

}

fmt.Println(fibonacci(10))

func quicksort(A []int) {

if len(A) < 2 {

return

}

lowerA, upperA := partition(A)

quicksort(lowerA)

quicksort(upperA)

}

quicksort(arrayX)

Instance-1: fibonacci Instance-2: quicksort

Layer-3 meaning
Smart construction

⚫ From concrete instances

to general concept

of four-part function

and

recursive function

May have side effect

18

func fibonacci(n int) int {

if n == 0 || n == 1 {

return n

}

return fibonacci(n-1)+fibonacci(n-2)

}

fmt.Println(fibonacci(10))

func quicksort(A []int) {

if len(A) < 2 {

return

}

lowerA, upperA := partition(A)

quicksort(lowerA)

quicksort(upperA)

}

quicksort(arrayX)

Instance-1: fibonacci Instance-2: quicksort

• Define base cases

and the rest

• May contain

recursive call

3. Eight understandings within (Acu-Exams)

⚫ Automatic execution. Computational processes are automatically

executed step-by-step on computers.

⚫ Correctness. The correctness of computational processes can be

rigorously defined and analyzed by computational models such as

Boolean logic and Turing machines.

⚫ Universality. Turing machine compatible computers can be used to solve

any computable problems.

⚫ Effectiveness. People are able to construct smart methods to solve

problems effectively.

⚫ compleXity. These smart methods, called algorithms, have time

complexity and space complexity when executed on a computer.

⚫ Abstraction. A small number of carefully crafted systems abstractions can

support many computing systems and applications.

⚫ Modularity. Computing systems are built by composing modules.

⚫ Seamless Transition. Computational processes smoothly execute on

computing systems, seamlessly transitioning from one step to the next.

19

3.1 Automatic execution

⚫ Computational processes are automatically executed step-

by-step on computers.

⚫ Automatic execution is common when looking inside or from

outside

⚫ Step-by-step mechanic automatic execution of digital symbol

manipulation is the most fundamental characteristic of

computational thinking, both without and within.

⚫ It underlies all the other seven understandings.

⚫ CS studies logic that is automatic executable logic, algorithms that

are automatic executed algorithms, abstractions that are automatic

executed abstractions.

⚫ It partially answers the question
⚫ Why and how trillions of instructions can be automatically executed in a

fraction of a second, sometimes across the globe, to produce correct

computational results?

20

3.2 Correct, smart, and practical processes

⚫ Automatic execution. Computational processes are automatically

executed step-by-step on computers.

⚫ Correctness. The correctness of computational processes can be

rigorously defined and analyzed by computational models such as

Boolean logic and Turing machines.

⚫ Universality. Turing machine compatible computers can be used to solve

any computable problems.

⚫ Effectiveness. People are able to construct smart methods to solve

problems effectively.

⚫ compleXity. These smart methods, called algorithms, have time

complexity and space complexity when executed on a computer.

⚫ Abstraction. A small number of carefully crafted systems abstractions can

support many computing systems and applications.

⚫ Modularity. Computing systems are built by composing modules.

⚫ Seamless Transition. Computational processes smoothly execute on

computing systems, seamlessly transitioning from one step to the next.

21

How to make computational

processes correct, smart,

and practical?

Logic thinking

(C, U); Chapter 3

Algorithmic thinking

(E, X); Chapter 4

Systems thinking

(A, M, S); Chapter 5

3.3 Computing Fibonacci numbers F(n)

⚫ Q: When the input data and the algorithm are correct, will the

program execution successfully produce the correct result?

⚫ A: Not necessarily. E.g., compute F(n) when n = 1 billion

⚫ Q: Why not?

⚫ A: There are many possible reasons, such as
1. The algorithm or program is too slow to finish in reasonable amount of time.

2. Wrong result due to overflow error.

⚫ The data type (64-bit integer) used has too small a word length to hold the result.

3. Other compile-time or run-time errors.

4. The program and its data are too big for the computer to hold (not enough

memory).

⚫ The program fib.go is

⚫ not smart: performs too many repetitive computations

⚫ not correct: produces wrong results starting at F(93)

⚫ not practical: F(100) needs hundred-thousand years

22

3.3 Computing Fibonacci numbers (demo)

⚫ Use program fib.all-40.go and fib.all-41.go to see why the code is slow

⚫ Which output not only F(n), but also F(0), F(1), …, F(n-1)

⚫ “time” is a command to measure execution time of the code

⚫ Observation

⚫ Suppose T(n) is the execution time to compute F(n) by fib.go.

⚫ Then, T(n+1)  1.6  T(n); when n increases by 10 to 50, T increases 1.69 = 68 times

23

Program fib.all-40.go

package main

import "fmt"

func main() {

for n:=0; n<=40; n++ {

fmt.Println("F(",n,")=", fibonacci(n))

}

}

func fibonacci(n int) int {

if n == 0 || n == 1 {

return n

}

return fibonacci(n-1)+fibonacci(n-2)

}

> time go run fib-40-all.go

F(0)= 0

F(1)= 1

F(2)= 1

F(3)= 2

F(4)= 3

…

F(38)= 39088169

F(39)= 63245986

F(40)= 102334155

real 0m1.463s

user 0m1.391s

sys 0m0.141s

3.3 Computing Fibonacci numbers (demo)

⚫ Observation

⚫ Suppose T(n) is the execution time to compute F(n) by fib.go.

⚫ Then, T(n+1)  1.6  T(n)

⚫ If T(50)=725 s, then

⚫ T(100)  1.6100-50  T(50)

⚫ T(500)  1.6500-50  T(50)

⚫ Both are judged to be impractical

24

n fib.go

50 725 seconds

100 1.171013 seconds = 369 thousand years

500 3.571093 seconds = 1.131086 years

5,000,000 Too big to compute

Execution time to compute F(n), in seconds

Values may vary depending on the computer used

3.3 Computing Fibonacci numbers (demo)

⚫ Use program fib.dp.all-50.go to speed up

25

Program fib.dp.all-50.go

package main

import "fmt"

func main() {

for n:=0; n<51; n++ {

fmt.Println("F(",n,")=", fibonacci(n))

}

func fibonacci(n int) int {

if n == 0 || n == 1 {

return n

}

var fib []int = make([]int, n+1) // make a slice fib

fib[0] = 0 // initialize fib[0] and fib[1]

fib[1] = 1

for i := 2; i <= n; i++ { // iteratively compute fib[i]

fib[i] = fib[i-1] + fib[i-2]

}

return fib[n]

}

> time go run fib.dp.all-50.go

F(0)= 0

F(1)= 1

F(2)= 1

F(3)= 2

F(4)= 3

…

F(42)=267914296

F(43)=433494437

F(44)=701408733

F(45)=1134903170

F(46)=1836311903

F(47)=2971215073

F(48)=4807526976

F(49)=7778742049

F(50)=12586269025

real 0m0.207s

user 0m0.094s

sys 0m0.109s

Program fib.dp.go can be simplified

⚫ Program fib.dp.go still produces wrong results starting at F(93)

⚫ Program fib.dp.big.go corrects it by using a new data type big.Int

⚫ Three different definitions of the fibonacci function

in fib.dp.go in simplified fib.dp.go in fib.dp.big.go

26

func fibonacci(n uint) *big.Int {

a := big.NewInt(0)

b := big.NewInt(1)

for i := uint(1); i < n+1; i++ {

a.Add(a, b)

a, b = b, a

}

return a

}

func fibonacci(n int) int {

var a, b, i int

a, b = 0, 1

for i = 1; i < n+1; i++ {

a = a + b

a, b = b, a

}

return a

}

func fibonacci(n int) int {

if n == 0 || n == 1 {

return n

}

var fib []int = make([]int, n+1)

fib[0] = 0

fib[1] = 1

for i := 2; i <= n; i++ {

fib[i] = fib[i-1] + fib[i-2]

}

return fib[n]

}

Program fib.dp.go can be simplified

⚫ Program fib.dp.go still produces wrong results starting at F(93)

⚫ Program fib.dp.big.go corrects it by using a new data type big.Int.

27

n fib.go fib.dp.go fib.dp.big.go fib.matrix.go

50 725 0.059 0.019 0.000012

500 Error Error 0.026 0.000022

5,000,000 Error Error 102 4.13

1,000,000,000 Error Error Killed after 2 days 187,160

Execution time to compute F(n), in seconds

Values may vary depending on the computer used

func fibonacci(n uint) *big.Int {

a := big.NewInt(0)

b := big.NewInt(1)

for i := uint(1); i < n+1; i++ {

a.Add(a, b)

a, b = b, a

}

return a

}

func fibonacci(n int) int {

var a, b, i int

a, b = 0, 1

for i = 1; i < n+1; i++ {

a = a+b

a, b = b, a

}

return a

}

func fibonacci(n int) int {

if n == 0 || n == 1 {

return n

}

var fib []int = make([]int, n+1)

fib[0] = 0

fib[1] = 1

for i := 2; i <= n; i++ {

fib[i] = fib[i-1] + fib[i-2]

}

return fib[n]

}

3.3 Computing F(1,000,000,000)

⚫ Program fib.dp.big.go is still too slow.

⚫ Program fib.matrix.go uses a smart algorithm, based on a fact

⚫

1 1
1 0

𝑛

=
𝐹(𝑛 + 1) 𝐹(𝑛)
𝐹(𝑛) 𝐹(𝑛 − 1)

, and

⚫ exponentiation by squaring

⚫ Program fib.matrix.go is correct, smart, and practical

for computing F(n), up to n = 1 billion

⚫ It computes F(1,000,000,000) in 2.17 days.

28

n fib.go fib.dp.go fib.dp.big.go fib.matrix.go

50 725 0.059 0.019 0.000012

500 Error Error 0.026 0.000022

5,000,000 Error Error 102 4.13

1,000,000,000 Error Error Killed after 2 days 187,160

Values may vary depending on the computer used

Execution time to compute F(n), in seconds

4. CS and CT are a synergy & a symphony

⚫ Three different viewpoints of the same CS

⚫ Georg Gottlob (Oxford)

⚫ Computer science is the continuation of logic by other means

⚫ Richard Karp (UC-Berkeley)

⚫ Computational lens (also known as algorithmic lens)

⚫ Joseph Sifakis (CNRS)

⚫ System design science

⚫ Classic: Yang Xiong‘s Canon of Supreme Mystery
⚫ 《太玄经·差首》：𝌐帝由群雍，物差其容。

⚫ Head Cha (Diversity) 𝌐: The way emerges from the multitude of harmonies, where

things diverge in their appearances.

⚫ Computer science is like a musical symphony. Many instruments produce different

sounds while playing the same music. Each instrument offers its distinct contribution.

The diversity of their differences creates a harmonic whole of the symphony.

⚫ Logic thinking, algorithmic thinking and systems thinking together produce the totality

of computational process, that is correct, smart, and practical.
29

