
Systems Thinking
Seamless Transition-2:

Amdahl’s Law, Computer Landscape

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1

Outline

⚫ What is systems thinking?

⚫ Three objectives of systems thinking

⚫ Abstraction

⚫ Modularization

⚫ Seamless transition
⚫ The symphony of four principles

⚫ Yang’s cycle principle

⚫ Postel’s robustness principle

⚫ von Neumann’s exhaustiveness principle

⚫ Amdahl's law

⚫ Pipeline

⚫ Cache

⚫ Parallelism

⚫ Landscape of computing systems

These slides acknowledge sources for additional data not cited in the textbook
2

5.5 Amdahl’s law

⚫ Previous 3 principles regard correctness (seamless transition)

⚫ Amdahl’s law focuses on performance (smooth transition)

⚫ 1-minute quiz
⚫ A student writes a program sort.go to read a 8-GB file of 64-bit integers, sort

the integers, and write the sorted result into another file on his laptop computer.

Suppose the total execution time is T, where 0.8*T is spent on I/O operations.

⚫ Q1: What is the problem size N, i.e., the number of integers?

⚫ A1: (a) 8 (b) 64 (c) 1024 (d) 64*1024*1024 (e) 1024*1024*1024

⚫ Q2: The student upgrades his laptop with a new wonder processor that is

100 times as fast as the old processor. How much time (approximately) is

needed to execute sort.go on the same 8-GB file?

⚫ A1: (a) T/100 (b) T/5 (c) 0.1*T (d) 0.8*T

Amdahl’s law

⚫ After enhancing a portion of a system, the speedup obtained

is upper bounded by the reciprocal of the other portion's time.

⚫ Suppose a system's execution time is broken into two

portions (1 − 𝑓) and 𝑓, such that 1 − 𝑓 > 𝑓

⚫ Amdahl’s law: Enhancement on the (1 − 𝑓) portion can lead

to a speedup no more than 1/f

⚫ Speedup approaches but never exceeds 1/f

⚫ Speedup = (time before enhancement) / (time after enhancement)

4

(1 − 𝑓)/𝑝 𝑓

Total execution time = (1-f)/p + f

(1 − 𝑓) 𝑓

Total execution time = 1

Amdahl’s law

⚫ After enhancing a portion of a system, the speedup obtained

is upper bounded by the reciprocal of the other portion's time.

⚫ Suppose a system's execution time is broken into two

portions (1 − 𝑓) and 𝑓, such that 1 − 𝑓 > 𝑓

⚫ Amdahl’s law: Enhancement on the (1 − 𝑓) portion can lead

to a speedup no more than 1/f

⚫ Speedup approaches but never exceeds 1/f

⚫ Speedup = (time before enhancement) / (time after enhancement)

 1/f at most

5

0 𝑓

Total execution time  0 + f

(1 − 𝑓) 𝑓

Total execution time = 1

5.5 Amdahl’s law

⚫ 1-minute quiz

⚫ A student writes a program sort.go to read a 8-GB file of 64-bit

integers, sort the integers, and write the sorted result into another file

on his laptop computer. Suppose the total execution time is T, where

0.8*T is spent on file I/O operations.

⚫ Q1: What is the problem size N, i.e., the number of integers?

⚫ A1: (a) 8 (b) 64 (c) 1024 (d) 64*1024*1024 (e) 1024*1024*1024

⚫ Q2: The student upgrades his laptop with a new wonder processor

that is 100 times as fast as the old processor. How much time

(approximately) is needed to execute sort.go on the same 8-GB file?

⚫ A1: (a) T/100 (b) T/5 (c) 0.1*T (d) 0.8*T

⚫ The processing time is about 0.2*T/100, but the I/O time stays the same. Thus, the

total time is about 0.2*T/100 + 0.8*T = 0.802*T

⚫ The speedup is T / 0.802T  1.247, only 24.7% faster

Implications of Amdahl’s law

⚫ Amdahl's law offers two advices for system design
⚫ Optimize the common case. System enhancement, or system

optimization, should focus on the common case, also known as the

bottleneck, i.e., the most time consuming portion

7

(1 − 𝑓) 𝑓

Common case

Bottleneck

Implications of Amdahl’s law

⚫ Amdahl's law offers two advices for system design
⚫ Optimize the common case. System enhancement, or system

optimization, should focus on the common case, also known as the

bottleneck, i.e., the most time consuming portion

⚫ Chase the bottleneck. When the system bottleneck changes, so does

our optimization target

8

(1 − 𝑓)/𝑝 𝑓

(1 − 𝑓) 𝑓

Common case

Bottleneck

Bottleneck 𝑓

Bottleneck

Implications of Amdahl’s law

⚫ Amdahl's law offers two advices for system design
⚫ Optimize the common case. System enhancement, or system

optimization, should focus on the common case, also known as the

bottleneck, i.e., the most time consuming portion

⚫ Chase the bottleneck. When the system bottleneck changes, so does

our optimization target

⚫ Three techniques to utilize Amdahl’s law

⚫ Pipelining, caching, parallel computing

9

(1 − 𝑓)/𝑝 𝑓

(1 − 𝑓) 𝑓

Common case

Bottleneck

Bottleneck 𝑓

Bottleneck

5.5.1 Pipelining: multiple instructions overlap

⚫ Optimize the bottleneck of the CPU’s instruction pipeline

⚫ Key technique: overlapping pipeline stages with multiple instructions

⚫ Using about the same amount of resource, plus some overhead

⚫ Assuming 1-GHz clock cycle, the average performance is

⚫ Without overlapping: executing an instruction needs 3 cycles and 3 ns

⚫ With overlapping: executing an instruction needs 1 cycle and 1 ns

Bottleneck

1-minute quiz

⚫ Q: Continue to draw the instruction pipeline configurations for

clock cycles 4, 5, 6. Which of the following configurations is

correct? (Assume the ideal case)
⚫ The colored box indicates that instruction I2 is executing the Instruction Decode (ID) stage at clock cycle 5

⚫ A:

Configuration 1 Configuration 2

1-minute quiz

⚫ Two computers X and Y have the same pipelined CPU with

the same clock frequency of 3.07 GHz.

⚫ Q1: Do the two computers show the same speed when executing the

same code (of Fibonacci loop)?

⚫ Q2: If computer X is 30 times faster than computer Y, what may be a

reason?

Why this strange 3.07 GHz? It is the CPU clock frequency of Summit, the world’s fastest supercomputer as of May 2020.

5.5.2 Caching: use a small but faster buffer

⚫ Optimize the von Neumann bottleneck

⚫ Memory is too slow to feed data to CPU

⚫ On the other hand, programs have spatial and temporal localities

⚫ Key technique: caching, i.e., using a small but faster buffer

Bottle-

neck

5.5.2 Caching: use a small but faster buffer

⚫ Optimize the von Neumann bottleneck

⚫ Memory is too slow to feed data to CPU

⚫ On the other hand, programs have spatial and temporal localities

⚫ Key technique: caching, i.e., using a small but faster buffer

⚫ Without having to change the instruction set

⚫ Design and back-of-envelop performance analysis

***Caching using the Fibonacci Computer

⚫ Two-layer caching
⚫ Layer 1: separate instruction and data caches

⚫ Layer 2: shared cache for instruction and data

⚫ Assume 92 iterations of the loop

code in red are executed

Instruction

type

Times of memory

accesses

Clock cycles

needed

MOV 0, R1 1 1*43 +1 → 43

MOV R1, M[…] 2 2*43 +1 → 86

ADD M[…], R1 2 2*43 +1 → 86

INC R2 1 1*43 +1 → 43

CMP 51, R2 1 1*43 +1 → 43

JL Loop 1 1*43 +1 → 43

Clock cycles of instructions without caching

Numbers in blue are canceled out due to pipeline overlapping.

A simpler analysis does not consider such optimizations, and

calculate the cycles for “MOV 0, R1” to be 1*43+1=44. This

simplification leads to similar performance analysis results.

Assume all internal operations together take 1 cycle.

Every instruction execution needs to access memory at least once to

fetch instruction. Some instructions need two accesses to also fetch data.

***When code and data are stored in level-1 caches

⚫ Instruction Fetch needs only 1 cycle

⚫ This is why 1st MOV needs 1 cycle

⚫ Instruction Fetch and Operand Fetch can

be done simultaneously, thanks to

Harvard architecture

⚫ This is why 1st ADD needs 1 cycle

⚫ Data and control dependencies may

cause pipeline to stall (wait)

⚫ This is why 2nd ADD needs 2 cycles and

JL needs 3 cycles

Instruction

type

Times of memory

accesses

Clock cycles

needed

MOV 0, R1 1 1*1 +1 → 1

MOV R1, M[…] 2 1*1 +1 → 1

ADD M[…], R1 2 1*1 +1 → 1

INC R2 1 1*1 +1 → 1

CMP 51, R2 1 1*1 +1 +1 → 2

JL Loop 1 1*1 +1 +2 → 3

Clock cycles of instructions with caching

Assume all internal operations together take 1 cycle.

Every instruction execution needs to access memory at least once to

fetch instruction. Some instructions need two accesses to also fetch data.

Simplified performance analysis

⚫ Simplify by consider a single iteration of loop

⚫ Without caching

⚫ Total time = 4*43 + 3*86

= 430 clock cycles

= 430 * 0.326 = 140 ns

⚫ With caching

⚫ Total time = 1*3 + 2*3 + 3*1

= 12 clock cycles

= 12 * 0.326 = 3.91 ns

⚫ Caching brings about significant speedup

⚫ Speedup = 140 ns / 3.91 ns = 35.8, or 34.8 times faster

17

Performance metrics of the 3.07-GHz FC

⚫ The peak speed of the Fibonacci Computer is the maximal

speed possible

⚫ Peak speed = 1 instruction per cycle = 3.07 GIPS

⚫ The sustained speed of the Fibonacci Computer is the real

speed achieved when executing the loop application code

⚫ Sustained speed = 7/140 = 0.05 GIPS

⚫ Each iteration takes 140 ns to execute 7 instructions

⚫ Efficiency = sustained speed / peak speed = 0.05 / 3.07 = 1.63%

18

Performance metrics of the 3.07-GHz FC

⚫ The peak speed of the Fibonacci Computer is the maximal

speed possible

⚫ Peak speed = 1 instruction per cycle = 3.07 GIPS

⚫ The sustained speed of the Fibonacci Computer is the

achieved speed when executing the loop application code

⚫ Sustained speed = 7/140 = 0.05 GIPS

⚫ Efficiency = sustained speed / peak speed = 0.05 / 3.07 = 1.63%

⚫ For the Fibonacci Computer with caching

⚫ Sustained speed = 7/12 = 1.79 GIPS

⚫ Speedup = 1.79 GIPS / 0.05 GIPS = 35.8

⚫ Efficiency = sustained speed / peak speed = 1.79 / 3.07 = 58.3%

⚫ Both have the same peak speed, but caching significantly

improves real speed (sustained speed)

19

5.5.3 Parallel computing

⚫ Also known as parallel processing

⚫ What if one CPU is not enough?

⚫ What if we need 10 GIPS, 1 million GIPS, 1 trillion GIPS?

⚫ Use multiple CPUs/processors/computers in one system

⚫ A processor having multiple CPUs is called a multicore processor

⚫ Each CPU is called a core

20

Supercomputer examples

⚫ Top500.org is a list ranking the world's fastest supercomputers

⚫ Maintained since 1993 by scientists in Europe and USA

⚫ Rank the 500 fastest supercomputers by their speeds in

executing the Linpack benchmark

⚫ Speed = executed 64-bit floating-point operations per second (FLOPS)

⚫ The main contributing factor of progress is parallel computing

21

Time of Test 1993 2020 1993-2020 Growth Factor

Top-1 Name Thinking Machine CM-5 Fujitsu Fugaku N/A

Problem Size N = 52,224 N = 20,459,520 392

Speed 59.7 GFlop/s 415,530 TFlop/s 6,960,302

Clock Frequency 32 MHz 2.2 GHz 69

Parallelism 1,024 cores 7,299,072 cores 7,128

Memory 32 GB 4,866,048 GB 152,064

Power 96.5 KW 28,334.5 KW 294

Cost US $30 million US $1 billion 33

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

×

𝑥1
𝑥2
𝑥3

=

𝑏1
𝑏2
𝑏3

The Linpack benchmark program for

solving a system of linear equations

using Gaussian elimination. It finds 𝒙
in 𝑨𝒙 = 𝒃, where 𝑨 is an 𝑁 × 𝑁 matrix,

and 𝒙, 𝒃 are two 𝑁-dimensional

vectors. For N=3, we have

5.5.4*** The landscape of computing systems

⚫ Focus on growing systems and future trends

⚫ Students may see when they graduate

⚫ Computers

⚫ Datacenters for cloud computing

⚫ Computer cluster, i.e., a system of multiple computers

⚫ Computers for cyber-human-physical systems

⚫ Domain-specific computers

⚫ Open-source computers

⚫ Application systems

⚫ AI + traditional applications

⚫ The network is the computer

⚫ The Internet is a computer

Gartner

Worldwide IT

Prediction

2020

Spending

(US$B)

2020

Growth

(%)

2021

Spending

(US$B)

2021

Growth

(%)

Data Center

Systems
215 0.0 228 6.2

Enterprise

Software
465 -2.4 506 8.8

Devices 653 -8.2 705 8.0

IT Services 1012 -2.7 1073 6.0

Communications

Services
1350 -1.7 1411 4.5

Overall IT 3695 -3.2 3923 6.2

https://www.gartner.com/en/newsroom/

press-releases/2020-01-25-gartner-

forecasts-worldwide-it-spending-to-

grow-6-point-2-percent-in-2021

Computing devices of cloud, edge, and things

A device of thing has four interfaces

• West: bridging the physical world

• East: bridging the human society

• South: bridging other devices of things

• North: bridging edge and cloud devices

L. Chao, X. Peng, Z. Xu and L. Zhang, "Ecosystem of Things: Hardware, Software, and Architecture,"

Proceedings of the IEEE, vol. 107, no. 8, pp. 1563-1583, Aug. 2019

Domain-specific computers

⚫ A computer or a part of a computing system

⚫ Specifically designed for a application domain,

⚫ such that its functionality, performance, interface,

efficiency, etc., are particularly effective

for the target domain

⚫ Processor examples

⚫ DSP: digital signal processing

⚫ GPU: graphic processing unit

⚫ A domain-specific processor may

also be good for other domains

⚫ GPUs have been used for

scientific computing and AI

⚫ DPU: for deep learning

⚫ An inspirational perspective

⚫ Hennessy, J. L., & Patterson, D. A. (2019). A new golden age for computer

architecture. Communications of the ACM, 62(2), 48-60.

24

Open-source computer example: RISC-V

⚫ Form the official site: https://riscv.org/about/
⚫ RISC-V is a free and open ISA enabling a new era of processor innovation

through open standard collaboration.

⚫ The RISC-V ISA delivers a new level of free, extensible software and hardware

freedom on architecture, paving the way for the next 50 years of computing

design and innovation.

⚫ ISA = instruction set architecture

⚫ Originated at UC-Berkeley

⚫ RISC-V = Berkeley RISC Five

⚫ RISC-V has become an

international effort

⚫ RISC-V International

⚫ > 1000 members in 50 countries

25

ARK Invest, Big Ideas 2021 Report,

https://ark-invest.com/big-ideas-2021/

Asanović K, Patterson D A. Instruction sets should be free:

The case for risc-v. EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014.

The trend of intelligent application systems

For sciences For economy
Enable inquiry of all structures & functions Value of AI companies > IT + Internet

26

Stevens, R., Taylor, V., Nichols, J., Maccabe, A. B., Yelick, K.,

& Brown, D. (2020). AI for Science (No. ANL-20/17). Argonne

National Lab.(ANL), Argonne, IL (United States).

ARK Invest, Big Ideas 2021 Report,

https://ark-invest.com/big-ideas-2021/

