
Systems Thinking
Abstraction: Objectives and Properties

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1

Outline

⚫ What is systems thinking?

⚫ Three objectives of systems thinking

⚫ Being thorough

⚫ Being systematic

⚫ Coping with complexity

⚫ Abstraction

⚫ What is abstraction?

⚫ The COG properties of abstraction

⚫ One abstraction for many scenarios

⚫ Data abstractions

⚫ Control abstractions

⚫ Modularization

⚫ Seamless transition

These slides acknowledge sources for additional data not cited in the textbook
2

1. What is systems thinking?

⚫ Systems thinking makes computational process practical

⚫ How?

⚫ Using abstractions to compose modules into a system, to enable

seamless execution of computational processes

⚫ In this process, we need to accomplish the seeming impossible

task of achieving three objectives simultaneously

⚫ Being thorough

⚫ Being systematic

⚫ Coping with complexity

⚫ System thinking is a synergy of science, engineering, and

art. A system designer is known as an architect

Example: the WeChat message storage problem

⚫ Where to store a chat message M created by user Zhang?

⚫ Possible choices

1. At sender Zhang’s device (phone)

2. At receiver Smith’s device (laptop)

3. At WeChat’s Datacenter

4. Somewhere in the Internet

4

④

① ②

③

Example: the WeChat message storage problem

⚫ Where to store a chat message M created by user Zhang?

⚫ Possible choices

1. At sender Zhang’s device (phone)

2. At receiver Smith’s device

3. At WeChat’s Datacenter

4. Somewhere in the Internet

5

Another choice:

Don’t store it. M

disappears after

Smith receives it.

④

① ②

③

Example: the WeChat message storage problem

⚫ Where to store a chat message M created by user Zhang?

⚫ Possible choices

1. At sender Zhang’s device (phone)

2. At receiver Smith’s device

3. At WeChat’s Datacenter

4. Somewhere in the Internet

6

Another choice:

Don’t store it. M

disappears after

Smith receives it.

⚫ Each choice leads to further

unanswered problems

⚫ Logic and algorithmic thinking

alone cannot solve this problem

⚫ Need thoughtful considerations

and tradeoffs involving many

issues of practical systems

④

① ②

③

Example: the WeChat message storage problem

⚫ Where to store a chat message M created by user Zhang?

⚫ Possible choices

1. At sender Zhang’s device (phone)

2. At receiver Smith’s device

3. At WeChat’s Datacenter 

4. Somewhere in the Internet

7

Message M is not directly

sent from Zhang’s device

to Smith’s device

④

① ②

③

2.1 Being thorough

⚫ Cover all the details of the whole system from end to end,

ignoring no necessary details

⚫ Including functionality, convenience, performance, fault tolerance,

privacy, scalability

⚫ From the sender end to the receiver end

⚫ Considering the whole stack of systems components

⚫ From the highest application end to the lowest hardware end

8

④

① ②

③

A necessary but boring detail

big endian vs. little endian

⚫ How to order bytes of a multi-byte number?

⚫ Danny Cohen (USC, 1980): “Agreement upon an order is more important than

the order agreed upon.”

⚫ Little endian: least significant byte, i.e., 0x43 of 0x40414243, in the smallest address A

⚫ Big endian: most significant byte, i.e., 0x40 of 0x40414243, in the smallest address A

⚫ State of the art

⚫ Big endian is used in TCP/IP networks, MIPS processors

⚫ Little endian is used in x86 processors, ARM processors, RISC-V processors

9

A 32-bit integer 107801862710,

or 0x40414243 in hex,

consists of four bytes:

Byte0 is 01000000=0x40,

Byte1 is 01000001=0x41,

Byte2 is 01000010=0x42,

Byte3 is 01000011=0x43.

In what order to place 0x40, 0x41, 0x42,

0x43 in memory cells A, A+1, A+2, A+3?

Clever abstraction: device driver

⚫ Worst case: each device matches millions of applications

⚫ With device driver: each device matches one interface

⚫ Innovation: device driver
⚫ Only need to write one device driver for each device

⚫ Every device is either a block device (disk) or character device (keyboard)

10

Millions of applications

Millions of devices

Clever abstraction:

smartly designed benchmarks

⚫ How to design a small set of benchmark programs to

measure supercomputer performance?

⚫ Make sure the benchmarks cover the four extreme points

⚫ Low-low, low-high, high-low, high-high

⚫ Other applications are in the area enclosed by the extreme points

⚫ A lot can be learned by

measuring extreme points

11

Computer performance is critically

influenced by locality.

Temporal locality: data and

instructions currently used tend to

be used again in near future.

Spatial locality: locations nearby a

reference item will also likely be

referenced.

2.2 Being systematic

⚫ The technical stack approach

⚫ Use one set of layers of abstractions to support many applications

⚫ Instead of one stack for an application, in an ad hoc way

⚫ Upper layer provides higher abstraction than lower layers

⚫ Processor is more abstract than circuits

12

1-minute quiz

Which of the following list correctly orders abstractions

from high-level to low-level?
(a) Computer, transistor, logic gate, processor

(b) Computer, logic gate, processor, transistor

(c) Computer, processor, logic gate, transistor

(d) Transistor, processor, logic gate, computer

Which of the following list orders abstractions from

high-level to low-level?
(a) Computer, transistor, combinational circuit, sequential circuit

(b) Computer, sequential circuit, combinational circuit, transistor

(c) Combinational circuit, computer, transistor, sequential circuit

(d) Transistor, sequential circuit, combinational circuit, computer

13

1-minute quiz

Which of the following list correctly orders abstractions

from high-level to low-level?
(a) Computer, transistor, logic gate, processor

(b) Computer, logic gate, processor, transistor

(c) Computer, processor, logic gate, transistor

(d) Transistor, processor, logic gate, computer

Which of the following list orders abstractions from

high-level to low-level?
(a) Computer, transistor, combinational circuit, sequential circuit

(b) Computer, sequential circuit, combinational circuit, transistor

(c) Combinational circuit, computer, transistor, sequential circuit

(d) Transistor, sequential circuit, combinational circuit, computer

14

Technical stack method is widely used

⚫ Software stack

⚫ Application software

⚫ Middleware

⚫ Operating system

⚫ Firmware

⚫ Cloud computing stack

⚫ BaaS, Business as a Service

⚫ SaaS, Software as a Service

⚫ PaaS, Platform as a Service

⚫ IaaS, Infrastructure as a Service

15

⚫ Web over Internet

protocol stack

⚫ Application layer

⚫ HTTP layer

⚫ TCP/UDP layer

⚫ IP layer

⚫ Data link layer

⚫ Physical layer

Another systematic method: cycle

⚫ Computational processes are executed as a

sequence of different types of cycles

⚫ Program cycle

⚫ Instruction cycle

⚫ Machine cycle

⚫ Clock cycle

⚫ Cycles are layered to form a stack

⚫ A program cycle consists of a number of instruction cycles

⚫ A instruction cycle consists of a number of machine cycles

⚫ A machine cycle consists of a number of clock cycles

⚫ Will discuss in detail in Seamless Transition
16

2.3 Coping with complexity

⚫ Systems complexity refers to the degree of how

complex a system is when we try to design,

build, or understand it.

⚫ It is a cognitive complexity as well as a physical

complexity

⚫ There is no general definition of systems

complexity

⚫ But, sub-areas of computer science has

measurements on systems complexity

⚫ In software engineering, we can measure the

complexity of a software system

▪ LoC (lines of code)

▪ Cyclomatic complexity (~number of conditionals, or

decision statements, in the software)

⚫ Systems complexity is related to, but different

from algorithmic complexity such as

⚫ O(NlogN) time complexity

⚫ O(N) space complexity

17

sum = sum + int(name[0])

sum = sum + int(name[1])

sum = sum + int(name[2])

sum = sum + int(name[3])

sum = sum + int(name[4])

sum = sum + int(name[5])

sum = sum + int(name[6])

sum = sum + int(name[7])

sum = sum + int(name[8])

sum = sum + int(name[9])

sum = sum + int(name[10])

A straight line program

LoC=11, CC=1

for i := 0; i < 11; i++ {

sum = sum + int(name[i])

}

A loop: LoC=3; CC=2

Watson, A. H., Wallace, D. R., & McCabe, T. J.

(1996). Structured testing: A testing methodology

using the cyclomatic complexity metric. US National

Institute of Standards and Technology.

CC=17

Systems complexity factors

⚫ Scale (size)

⚫ Number of components of a system

⚫ N*C, where N = LoC = 11, C is the number of

components in a line, C~5

⚫ What if N=1024? That is, the last statement

becomes

⚫ sum = sum + int(name[1023])

⚫ Heterogeneity

⚫ Types of components

⚫ Homogeneous, all components are the same

except for the index value

⚫ Organization (structure)

⚫ How the components organized

⚫ Very simple: a straight line

⚫ Variability (variation)

⚫ Times, rate, scale, and nature of change

⚫ No variation
18

sum = sum + int(name[0])

sum = sum + int(name[1])

sum = sum + int(name[2])

sum = sum + int(name[3])

sum = sum + int(name[4])

sum = sum + int(name[5])

sum = sum + int(name[6])

sum = sum + int(name[7])

sum = sum + int(name[8])

sum = sum + int(name[9])

sum = sum + int(name[10])

A straight line program

LoC=11, CC=1

Overall, this system has

low complexity, except

that the program size is

proportional to input size.

In general, this is a bad

design, except for small

input sizes.

Systems complexity factors

⚫ Scale (size)

⚫ Number of components of a system

⚫ A constant (~10) in a single loop construct

⚫ Heterogeneity

⚫ Types of components

⚫ Highly homogeneous

⚫ Organization (structure)

⚫ How the components organized

⚫ Well structured loop

⚫ Variability (variation)

⚫ Time, rate, scale, and nature of change

⚫ Low variability with regular and small variations

⚫ Time: changes happen at two time moments: initially (i:=0)

and at each iteration (i++)

⚫ Rate: once per iteration

⚫ Scale: constant (increment by one)

⚫ Nature: change the index of array name

19

for i := 0; i < 11; i++ {

sum = sum + int(name[i])

}

A loop: LoC=3; CC=2

This system has low

complexity. The program

size is constant, not

proportional to input size.

Con: magic number 11

Systems complexity factors

⚫ Scale (size)

⚫ Number of components of a system

⚫ 50 code blocks

⚫ Heterogeneity

⚫ Types of components

⚫ Very heterogeneous, dozens of types

⚫ Organization (structure)

⚫ Badly structured

⚫ Too many decision points; CC=17 too high

⚫ McCabe’s suggestion: CC<10

⚫ Variability (variation)

⚫ Times, rate, scale, and nature of change

⚫ Highly variable. The control flow (program

logic) jumps all over the place.

20

Watson, A. H., Wallace, D. R., & McCabe, T. J.

(1996). Structured testing: A testing methodology

using the cyclomatic complexity metric. US National

Institute of Standards and Technology.

CC=17

A highly complex system

Systems complexity factors

⚫ Scale (size)

⚫ Number of components of a system

⚫ Heterogeneity

⚫ Types of components

⚫ Organization (structure)

⚫ How the components organized

⚫ Variability (variation)

⚫ Times, rate, scale, and nature

of change

⚫ Contrast the three cases

21

sum = sum + int(name[0])

sum = sum + int(name[1])

sum = sum + int(name[2])

sum = sum + int(name[3])

sum = sum + int(name[4])

sum = sum + int(name[5])

sum = sum + int(name[6])

sum = sum + int(name[7])

sum = sum + int(name[8])

sum = sum + int(name[9])

sum = sum + int(name[10])

A straight line program

LoC=11, CC=1

for i := 0; i < 11; i++ {

sum = sum + int(name[i])

}

A loop: LoC=3; CC=2

Watson, A. H., Wallace, D. R., & McCabe, T. J.

(1996). Structured testing: A testing methodology

using the cyclomatic complexity metric. US National

Institute of Standards and Technology.

CC=17

3.1 What is abstraction?

⚫ The creative process of abstracting a high-level entity from

low-level instances by focusing on the essential

⚫ Also the outcome of the creative process of abstracting

⚫ Examples

of 4-level of

abstractions

⚫ Data types

⚫ Software

⚫ Architecture

⚫ Hardware

22

Data Type

bit (1 bit), hexadecimal number (4 bits), byte (8 bits), uint8 (8-bit unsigned

integer), integer (64 bits); array (n elements of the same type), slice (a de-

scriptor pointing to an array); text file, BMP image file; hypertext and hy-

perlink

Software

Algorithm
Smart method of information transformation, such

as quicksort, hiding text in a BMP file, etc.

Program
Code realizing algorithms in computer language,

such as hide.go in the Text Hider project

Process
Program in execution, such as the “hide” process

running in a Linux environment

Instruction
The smallest unit of software, directly executable

by computer hardware

von Neumann Architecture: a computer model bridging software and hardware

Hardware

Instruction Pipeline
The basic hardware mechanism to automatically

execute any instruction

Sequential Circuit

More precisely, only consider Synchronous Se-

quential Circuit comprised of combinational cir-

cuits and state circuits and driven by a clock sig-

nal; equivalent to the automata concept

Combinational Circuit Aka Boolean circuit, realizing a Boolean function

3.2 The COG properties

⚫ A computing abstraction is Constrained, Objective, and

Generalizable

⚫ Constrained: a high-level concept constrained by hiding details

⚫ Focuses on the essential, while hiding (or ignoring) details

⚫ The ability to hide and ignore, namely, to constrain, is why abstraction

can cope with complexity

⚫ Objective: a named, objective entity, no vagueness or ambiguity

⚫ Syntactically and semantically precisely defined concept

⚫ Objectivity enables bit-accurate and automatically executable

abstraction

⚫ Generalizable: to future instances and scenarios

⚫ Able to handle existing instances already seen, as well as unseen

instances and unexpected scenarios

⚫ Generalization is why we can use one set of abstractions to solve all

present and future problems, instead of treating each problem instance

individually

23

Example: Unicode

⚫ Process of abstracting: Encoding the world's writing systems

⚫ Outcome of abstracting: Unicode (with COG properties)
⚫ Constrained: focus on the essential; ignore details such as a symbol’s meanings

⚫ U+5174 represents character 兴; ignore meanings such as happy, agitated, a name

⚫ Objective: a named, objective entity, no vagueness or ambiguity

⚫ Syntactically and semantically precisely defined by Unicode standards

⚫ Enables bit-accurate and automatic execution in systems worldwide

⚫ Generalizable: to unseen instances or unexpected scenarios

⚫ Able to handle existing instances already seen, as well as unseen instances and unexpected

scenarios

⚫ Generalization is why we can use one set of abstractions to solve all present and future

problems, instead of treating each problem instance individually

24

Symbol Description Unicode

T English capital letter T U+0054

Ω Greek letter Omega U+03A9

€ The Euro sign U+20AC

志 A Chinese character U+5FD7

𐍈 A Gothic letter U+10348

Example: World Wide Web

⚫ Abstracting: Accessing the world’s information resources by

hypertext

⚫ Outcome: Tim Berners-Lee’s WWW abstraction

⚫ Constrained

⚫ Focusing on accessing Web resources via URL, HTTP, and HTML;

ignore details of storing, processing, etc.

⚫ Objective

⚫ Precise specification by IETF & W3C standards

⚫ Generalizable

⚫ Originally, resource = document

⚫ Generalized to

multimedia,

programs,

data,

things
25

https://www.w3.org/comm/assets/logos

/Web@30_logo/Logo_web/PNG/Logo_

Logo_horizontal.png

3.3 One abstraction for thousands of scenarios

以一耦万

⚫ There are millions of computer applications and thousand types

of computers worldwide

⚫ Q: How many models does a user see when writing an application, such as

when writing a Go program fib.dp.go to compute Fibonacci numbers?

⚫ 1? 10? 100? 1000?

⚫ A related question

⚫ Our class has hundreds of students, each using having a laptop computer. These hundreds of

computers come in different types, with different processors, memory configurations, and

operating systems. When writing their fib.dp.go programs, do the students see the same

model or different models of computers?

26

Millions of applications

Thousand types of computers

One abstraction for thousands of scenarios

以一耦万

⚫ There are millions of computer applications and thousand types

of computers worldwide

⚫ Q: How many models does a user see when writing an application, such as

when writing a Go program fib.dp.go to compute Fibonacci numbers?

⚫ A: One. An application sees all these computers as having the same model.

We can ignore the detailed hardware and software particularities.

27

Millions of applications

One abstraction for modeling

Thousand types of computers

One abstraction for thousands of scenarios

以一耦万

⚫ There are millions of computer applications and thousand types

of computers worldwide

⚫ Operating system uses one abstraction to manage programs in execution,

no matter what the programs are

⚫ Q: What is this abstraction called?

⚫ A:

28

Millions of applications

One abstraction for modeling

Thousand types of computers

P1, …, P9 are 9 processes executing on Computer-1
P1 is program fib.go in execution, P2 is program fib.dp.go in

execution, P9 is VS Code executing, etc.

One abstraction for thousands of scenarios

以一耦万

⚫ There are millions of computer applications and thousand types

of computers worldwide

⚫ Operating system uses one abstraction to manage programs in execution,

no matter what the programs are

⚫ Q: What is this abstraction called?

⚫ A: Process

29

Millions of applications

One abstraction for modeling

One abstraction for managing

Thousand types of computers

Billions of computers

P1, …, P9 are 9 processes executing on Computer-1
P1 is program fib.go in execution, P2 is program fib.dp.go in

execution, P9 is VS Code executing, etc.

