
Systems Thinking
Modularization-1:

Combinational Circuits and Sequential Circuits

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1

Outline

⚫ What is systems thinking?

⚫ Three objectives of systems thinking

⚫ Abstraction

⚫ Modularization

⚫ Modularization and modules

⚫ Combinational circuits
⚫ Logic gates and combinational circuits

⚫ The information hiding principle

⚫ Adders

⚫ An adder-subtractor controlled by multiplexers

⚫ Sequential circuits
⚫ Types of memory cells and the D flip-flop

⚫ General organization of sequential circuit

⚫ A serial adder example

⚫ Instruction Set and Instruction Pipeline

⚫ Software Stack

⚫ Seamless transition

These slides acknowledge sources for additional data not cited in the textbook

2

4.1 Modularization and modules

⚫ Modularization is a systems thinking method, similar to

divide-and-conquer in algorithmic thinking

⚫ Divide a system into multiple subsystems called modules

⚫ Compose modules into a system (higher-level abstraction)

⚫ In a system with modularization

⚫ Two modules may be interconnected, but normally do not overlap

⚫ Modularization is a special form of abstraction where the

information hiding principle is followed

⚫ Modularization, i.e., how to divide and compose a system, is

an art, needing human imagination and creativity

⚫ Understand how modularization works via a design journey

⚫ of higher and higher hardware subsystem abstractions

⚫ from designing gates to designing an instruction pipeline

4.1.1 Logic gates and combinational circuit

⚫ Logic gates: electronic circuits realizing Boolean operators

AND OR NOT XOR NAND CMOS circuit for NAND
circle means NOT

4

X

Y
Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X

Y
Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Z

0 1

1 0

ZX
X

Y
Z

X

Y
Z

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

X Y

Y

X

Z

Vdd

Vss

Gate

Source

Drain

4.2.1 Logic gates and combinational circuit

⚫ Logic gates: electronic circuits realizing Boolean operators

AND OR NOT XOR NAND CMOS circuit for NAND
circle means NOT

5

X

Y
Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X

Y
Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Z

0 1

1 0

ZX
X

Y
Z

X

Y
Z

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

X Y

Y

X

Z

Vdd

Vss

Gate

Source

Drain

W

X

Y Z
A B

X Y

Y

X

Vdd

Vss

W

W

Z

Vdd

Vss

4.2.1 Logic gates and combinational circuit

⚫ Logic gates: electronic circuits realizing Boolean operators

AND OR NOT XOR NAND CMOS circuit for NAND
Vss: ground (0); Vdd: high voltage (1)

⚫ A combinational circuit is comprised of interconnected gates without

feedback wires

⚫ Any combinational circuit has a

corresponding Boolean expression

⚫ Any Boolean expression has a

corresponding combinational circuit

⚫ A combinational circuit can be

shown as a logic diagram
6

X

Y
Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X

Y
Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Z

0 1

1 0

ZX
X

Y
Z

X

Y
Z

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

X Y

Y

X

Z

Vdd

Vss

Gate

Source

Drain

W

X

Y Z
A B

X Y

Y

X

Vdd

Vss

W

W

Z

Vdd

Vss

CMOS circuit

4.2.1 Logic gates and combinational circuit

⚫ Logic gates: electronic circuits realizing Boolean operators

AND OR NOT XOR NAND CMOS circuit for NAND

A combinational circuit is comprised of interconnected gates without

feedback wires

⚫ Any combinational circuit has a

corresponding Boolean expression

⚫ Any Boolean expression has a

corresponding combinational circuit

⚫ A combinational circuit can be

shown as a logic diagram

7

X

Y
Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X

Y
Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Z

0 1

1 0

ZX
X

Y
Z

X

Y
Z

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

X Y

Y

X

Z

Vdd

Vss

Gate

Source

Drain

W

X

Y Z
A B

X Y

Y

X

Vdd

Vss

W

W

Z

Vdd

Vss

CMOS circuit
Such feedback wire

is not allowed

W

X

Y Z
A B

X Y

Y

X

Vdd

Vss

W

W

Z

Vdd

Vss

4.2.2 The information hiding principle

⚫ A module only exposes its interface and visible behaviors, but

hides internal details and internal behavior

⚫ Three types of abstractions are shown of the same

combinational circuit
⚫ Boolean expression

⚫ Logic diagram

⚫ CMOS circuit

⚫ The three yellow areas

are different abstractions for the same thing

⚫ a 2-input-1-output NAND gate

⚫ The Boolean expression and the logic diagram abstractions

hide internal details of the CMOS implementation

⚫ The former two are simpler and allow different implementations

8

4.2.3 Adders

⚫ Add two unsigned numbers X and Y to generate result sum Z

⚫ Consider the carry-in bit Cin and the carry-out bit Cout

⚫ Use the same algorithm we use when doing addition by pen and paper

⚫ For one bit, design a full adder

⚫ Here, “full” means the adder considers carry-in and carry-out bits

⚫ 1-minute quiz: given X, Y and Cin, what are the expressions of Z and Cout?

9

 Full

 Adder

YX

Cout Cin

Z

Full adder symbol

Full adder

⚫ Add two unsigned numbers X and Y to generate result sum Z

⚫ Consider the carry-in bit Cin and the carry-out bit Cout

⚫ Use the same algorithm we use when doing addition by pen and paper

⚫ For one bit, design a full adder

⚫ Here, “full” means the adder considers carry-in and carry-out bits

⚫ 1-minute quiz: given X, Y and Cin, what are the expressions of Z and Cout?

⚫ A: Derive the truth table from the manual addition method

Then, derive the Boolean expressions for Z and Cout

⚫ 𝑍 = 𝑋 ⊕ 𝑌⊕ 𝐶𝑖𝑛
⚫ 𝐶𝑜𝑢𝑡 = 𝑋 ∙ 𝑌 + (𝑋⊕ 𝑌) ∙ 𝐶𝑖𝑛

10

 Full

 Adder

YX

Cout Cin

Z

X Y

Z

Cin

Cout

Full adder symbol Truth table Implementation by gates

Cin X Y Z Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Ripple-carry adder

⚫ Add two unsigned numbers X and Y to generate result sum Z

⚫ Consider the carry-in bit Cin and the carry-out bit Cout

⚫ Use the same algorithm we use when doing addition by pen and paper

⚫ For n-bit, design an n-bit ripple-carry adder (assuming n=4 in example)

⚫ Use X+Y=1011+1001 = 10100 to verify that the 4-bit adder works correctly

⚫ 1-minute quiz: How much time to do the addition? Use gate delay as the unit

11

 Full

 Adder

YX

Cout Cin

Z

X Y

Z

Cin

Cout

 Full

 AdderC4

X3 Y3

Z3

 Full

 Adder

X2 Y2

Z2

 Full

 Adder

X1 Y1

Z1

 Full

 Adder C0

X0 Y0

Z0

C1C2C3

Full adder symbol Its implementation by gates A 4-bit ripple-carry adder

Ripple-carry adder

⚫ Add two unsigned numbers X and Y to generate result sum Z

⚫ Consider the carry-in bit Cin and the carry-out bit Cout

⚫ Use the same algorithm we use when doing addition by pen and paper

⚫ For n-bit, design an n-bit ripple-carry adder (assuming n=4 in example)

⚫ 1-minute quiz: How much time to do the addition? Use gate delay as the unit

⚫ Answer 1: total delay ~ 3n; about 12 gate delays when n=4

⚫ Because each full adder needs 3 gate delays to generate carry-out

⚫ Is this answer correct?

12

 Full

 Adder

YX

Cout Cin

Z

X Y

Z

Cin

Cout

 Full

 AdderC4

X3 Y3

Z3

 Full

 Adder

X2 Y2

Z2

 Full

 Adder

X1 Y1

Z1

 Full

 Adder C0

X0 Y0

Z0

C1C2C3

Full adder symbol Its implementation by gates A 4-bit ripple-carry adder

Ripple-carry adder

⚫ Add two unsigned numbers X and Y to generate result sum Z

⚫ Consider the carry-in bit Cin and the carry-out bit Cout

⚫ Use the same algorithm we use when doing addition by pen and paper

⚫ For n-bit, design an n-bit ripple-carry adder (assuming n=4 in example)

⚫ 1-minute quiz: How much time to do the addition? Use gate delay as the unit

⚫ Answer 2: 2n+1. 9 gate delays for n=4

⚫ Only C1 needs 3 gate delays, and another Ci needs only 2 additional gate delays.

⚫ Why? Because for 1 ≤ 𝑖 < 𝑛, 𝑋𝑖⨁𝑌𝑖 is already generated when 𝐶1 becomes available

▪ Red line shows the longest path

13Expand to show the gate-level details

X Y

Z

Cin

Cout

X Y

Z

Cin

Cout

X Y

Z

Cin

Cout

X Y

Z

Cin

Cout

i=3 i=2 i=1 i=0

A much faster adder

⚫ Instead of compute the carry

bits one by one in n steps, we

can compute all the n carry bits

in parallel in one step

⚫ This step needs 3 gate delays

⚫ Afterwards, the n sum bits are

computed in parallel in one step

⚫ This step needs 1 gate delay

⚫ 4 gate delays in total

⚫ Compared to 2n -1 gate delays for

ripple-carry adder

⚫ Constrained by fan-in and fan-

out in practice

⚫ A gate can only safely

receive a few inputs

⚫ A gate output cannot

drive too many wires

14

X3=1 C3=0

Y3=1

X2=0 C2=1

Y2=0

X1=1 C1=1

Y1=0

X0=1 C0=0

Y0=1

Z3=0 Z2=1 Z1=0 Z0=0

Output: Z3Z2Z1Z0=0100

Input: X3X2X1X0=1011, Y3Y2Y1Y0=1001, C3C2C1C0=0110

C4=1

G3=1 G2=0 G1=0 G0=1 P3=1 P2=0 P1=1 P0=1

C3=0 C2=1 C1=1

C0

Input: X3X2X1X0=1011

Y3Y2Y1Y0=1001

C0=0

X3Y3 X2Y2 X1Y1 X0Y0

Output: C4C3C2C1=1011

fan-out = 4 fan-in = 5

4.2.4 A combinational circuit can compute

multiple functions via selection by control signals

⚫ An adder-subtractor controlled by a multiplexer (MUX in short)

⚫ Control signal S to select addition (S=0) or subtraction (S=1)

⚫ Subtraction is adding negative, e.g., 5-5 = 5+(-5)

⚫ The negative value of a number X is the two’s complement of X

⚫ Let X = Y = 5, i.e., X3X2X1X0 = Y3Y2Y1Y0 = 0101

⚫ Then, X – Y = 5 + (-5) = 5 + Two’s complement of 5

→ 0101 + 0 1 0 1 + 0001

= 0101 + 1011

= 10000 = C4 Z3 Z2 Z1 Z0

15

S X Y Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

MUX

X Y

S

Z

S Z

0 X

1 Y

4-bit Adder C0C4

Z3 Z2 Z1 Z0

X3 Y3 X2 Y2 X1 Y1 X0 Y0

A multiplexer A two's complement 4-bit adder and an adder-subtractor

𝑍 = ቊ
𝑋 if 𝑆 = 0
𝑌 if 𝑆 = 1

4.3 Sequential circuits

⚫ Sequential circuit = combinational circuit + state circuit

⚫ With states, a system can execute multi-step computational processes

⚫ Each step computes two types of values

⚫ The current output values

⚫ The next state values

⚫ Both are computed from

⚫ The current input values

⚫ The current state values

⚫ Correspondences to abstractions in logic thinking

⚫ A combinational circuit is equivalent to a Boolean expression

⚫ A sequential circuit is equivalent to an automaton

⚫ States in hardware circuits are implemented by two types of

basic circuits

⚫ Memory cells

⚫ flip-flops: logic circuits with feedback wires

⚫ We discuss only the D flip-flop

16

4.3.1 Types of memory technology

⚫ Non-volatile memory (NVM): content is retained when power is off

⚫ ROM (read-only memory)

⚫ Read-write NVM

⚫ Volatile memory: content is lost when power is off

⚫ DRAM (dynamic random access memory)

⚫ Simple and inexpensive

⚫ Needs to constantly refresh its content (once every 7.8-128 µs)

⚫ Because the capacitor leaks electricity after charging

⚫ SRAM (static random access memory)

⚫ More complex but avoid refreshing overhead

⚫ Faster but more expensive than DRAM

17

Word Line

Bit Line

Type Latency Price $/GB

Register 100s ps N/A

SRAM 100s ps ~ 10 ns $100’s ~1000s /GB

DRAM 10s ~ 100 ns $2~4 /GB

NVM: Main Memory 100 ns ~ 10 s $6 / GB

NVM: SSD 10 s ~ 1 ms $0.1~0.2 / GB

Hard Disk: HDD > A few ms $0.02 / GB

B

Q

Vss Vss

Vdd

W

Q

SRAM cell
6 transistors

DRAM cell
1 transistor and

1 capacitor

4.3.2 D flip-flop

⚫ We can also use gates to form state circuits

⚫ With feedback wires

⚫ A common type is the delay flip-flop, or D flip-flop

⚫ 2-input-2-output, where the 2 states (outputs) are negation of each other

⚫ Input D is data input; Input E (enable signal) is often the clock signal CLK

⚫ Functionality: when enabled, Q is D delayed one clock cycle

⚫ When E=0, Q remains the same; when E=1, the new Q will be the current D

18

E D Q Qnext

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

E

D
Q

D flip-flop: Truth table Internal logic diagram Symbol

4.3.2 D flip-flop

⚫ A common type is the delay flip-flop, or D flip-flop

⚫ 2-input-2-output, where the 2 states (outputs) are negation of each other

⚫ Input D is data input; Input E (enable signal) is often the clock signal CLK

⚫ Functionality: when enabled, Q is D delayed one clock cycle

19

E D Q Qnext

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

E

D
Q

D flip-flop: Truth table Internal logic diagram Symbol

D=1 D=0 D=0

Q=1 Q=0 Q=0

Cycle1 Cycle2 Cycle3 Cycle4

4.3.3 General organization of sequential circuits

⚫ Any sequential circuit can be organized as shown below

⚫ Comprised of two combinational circuits and a state circuit

⚫ Driven by a clock signal CLK

⚫ The state circuit consists of one or more D flip-flops

⚫ The output circuit F: Out(t) = F(In(t), State(t))

⚫ The next-state circuit G: State(t+1) = G(In(t), State(t))

⚫ This is the logic diagram for a sequential circuit

⚫ Also called synchronous sequential circuit

⚫ Because the sequential circuit is synchronized by the clock signal

20

Combinational

Circuit G

State

Circuit

Combinational

Circuit F

State(t+1)

In(t)
State(t)

Out(t)CLK

4.3.3 General organization of sequential circuits

⚫ Any sequential circuit can be organized as shown below

⚫ Comprised of two combinational circuits and a state circuit

⚫ Driven by a clock signal CLK

⚫ The state circuit consists of one or more D flip-flops

⚫ The output circuit F: Out(t) = F(In(t), State(t))

⚫ The next-state circuit G: State(t+1) = G(In(t), State(t))

⚫ An input or output may have multiple bits

21

Combinational

Circuit G

State

Circuit

Combinational

Circuit F

State(t+1)

In(t)
State(t)

Out(t)CLK

We will go through the process of designing a 4-bit serial adder

8

4.3.4 Design a 4-bit serial adder

⚫ To perform 𝑍3𝑍2𝑍1𝑍0 = 𝑋3𝑋2𝑋1𝑋0 + 𝑌3𝑌2𝑌1𝑌0 in 4 steps

⚫ Each step performs a full addition

⚫ First, design the adder

⚫ Second, verify the correctness of the adder

⚫ Use of an example is helpful in both design and verification

⚫ X + Y = 1110 + 910

= 10112 + 10012 = 101002

= 2010 = 410 and overflow

= 01002 and overflow

⚫ Therefore, 𝑍3𝑍2𝑍1𝑍0 = 0100 and the carry-bit 𝐶4 = 1

22

Design process

⚫ Perform 𝑍3𝑍2𝑍1𝑍0 = 𝑋3𝑋2𝑋1𝑋0 + 𝑌3𝑌2𝑌1𝑌0 in 4 steps

⚫ Example: X + Y = 1110 + 910 = 10112 + 10012 = 101002 = 2010 = “410 and overflow”

⚫ Design process

1. Q: how many bits (or D flip-flops) are needed for the state circuit?

⚫ A: 1 bit to hold the carry bit. Only one D flip-flop is needed. Denote the state as Q.

2. Draw the logic diagram for the sequential circuit

⚫ How?

⚫ Some students directly draw it by applying the principle of serial addition

▪ Those students can skip the next 5 slides

⚫ Some prefer to understand behavior of the sequential circuit (the figure below)

by executing X + Y (serial addition) using the paper+pencil method

23

Combinational

Circuit G

D Flip-Flop

Combinational

Circuit F

Q(t+1)

 2 /

In(t) Q(t)

Z(t)CLK

1 0 1 1

1 0 0 1

𝑋3𝑋2𝑋1𝑋0

𝑌3𝑌2𝑌1𝑌0

𝑍3𝑍2𝑍1𝑍0

0 1 0 0

𝐶4𝐶3𝐶2𝐶1𝐶0

1 0 1 1 0
𝐶4𝐶3𝐶2𝐶1

1 0 1 1

Design process

⚫ Perform 𝑍3𝑍2𝑍1𝑍0 = 𝑋3𝑋2𝑋1𝑋0 + 𝑌3𝑌2𝑌1𝑌0 in 4 steps

⚫ Each step is a clock cycle

⚫ Each step performs a full addition

⚫ Use the paper+pencil method

⚫ Step 1 (clock cycle 1) is shown in bold. Note that initial state Q(0) = C0 = 0

⚫ Given C0 = 0, X0 = 1, Y0 = 1, circuits F, G should output Z0 = 0, C1 = Q(1) = 1

24

Combinational

Circuit G

D Flip-Flop

Combinational

Circuit F

Q(t+1)

 2 /

In(t) Q(t)

Z(t)CLK

1 0 1 1

1 0 0 1

𝑋3𝑋2𝑋1𝑋0

𝑌3𝑌2 𝑌1 𝑌0

𝑍0

0

𝐶0

0
𝐶1

1

1 0 1 1= X

+ 1 0 0 1= Y

0= C

0= Z

Design process

⚫ Perform 𝑍3𝑍2𝑍1𝑍0 = 𝑋3𝑋2𝑋1𝑋0 + 𝑌3𝑌2𝑌1𝑌0 in 4 steps

⚫ Each step takes a clock cycle to complete

⚫ Each step performs a full addition

⚫ Use the paper+pencil method

⚫ Step 1 (clock cycle 1) is shown in bold. Note that Q(0) = C0 = 0

⚫ Given C0 = 0, X0 = 1, Y0 = 1, circuits F, G should output Z0 = 0, C1 = Q(1) = 1

⚫ At the final moment of clock cycle 1 (and the beginning of cycle 2),

the D flip-flop output Q(t) takes the value of the D flip-flop data input Q(t+1)

25

Combinational

Circuit G

D Flip-Flop

Combinational

Circuit F

Q(t+1)

 2 /

In(t) Q(t)

Z(t)CLK

1 0 1 1

1 0 0 1

𝑋3𝑋2𝑋1𝑋0

𝑌3𝑌2 𝑌1 𝑌0

𝑍0

0

𝐶1𝐶0

10
𝐶1

1

1 0 1 1= X

+ 1 0 0 1= Y

1 0= C

0= Z

Design process

⚫ Perform 𝑍3𝑍2𝑍1𝑍0 = 𝑋3𝑋2𝑋1𝑋0 + 𝑌3𝑌2𝑌1𝑌0 in 4 steps

⚫ Each step performs a full addition

⚫ Use the paper+pencil method

⚫ Step 2 (clock cycle 1) is shown in bold. Note that Q(1) = C1 = 1

26

Combinational

Circuit G

D Flip-Flop

Combinational

Circuit F

Q(t+1)

 2 /

In(t) Q(t)

Z(t)CLK

1 0 1

1 0 0

𝑋3𝑋2𝑋1

𝑌3𝑌2 𝑌1

𝑍1𝑍0

0 0

𝐶2𝐶1𝐶0

1 1 0
𝐶2𝐶1

1 1

1 0 1 1= X

+ 1 0 0 1= Y

1 1 0= C

0 0= Z

Design process

⚫ Perform 𝑍3𝑍2𝑍1𝑍0 = 𝑋3𝑋2𝑋1𝑋0 + 𝑌3𝑌2𝑌1𝑌0 in 4 steps

⚫ Each step performs a full addition

⚫ Continue to do Step 3 and 4

27

Combinational

Circuit G

D Flip-Flop

Combinational

Circuit F

Q(t+1)

 2 /

In(t) Q(t)

Z(t)CLK

1 0 1 1

1 0 0 1

𝑋3𝑋2𝑋1𝑋0

𝑌3𝑌2 𝑌1 𝑌0

𝑍3𝑍2𝑍1𝑍0

0 1 0 0

𝐶4𝐶3𝐶2𝐶1𝐶0

1 0 1 1 0
𝐶4𝐶3𝐶2𝐶1

1 0 1 1

1 0 1 1= X

+ 1 0 0 1= Y

1 0 1 1 0= C

0 1 0 0= Z

Design process

⚫ Draw the logic diagram for the sequential circuit

⚫ Derive the state-transition diagram

28

Combinational

Circuit G

D Flip-Flop

Combinational

Circuit F

Q(t+1)

 2 /

In(t) Q(t)

Z(t)CLK

1 0 1 1

1 0 0 1

𝑋3𝑋2𝑋1𝑋0

𝑌3𝑌2 𝑌1 𝑌0

𝑍3𝑍2𝑍1𝑍0
0 1 0 0

𝐶4𝐶3𝐶2𝐶1𝐶0
1 0 1 1 0𝐶4𝐶3𝐶2𝐶1

1 0 1 1

q0 denotes C=0

q1 denotes C=1

1 0 1 1= X

+ 1 0 0 1= Y

1 0 1 1 0= C

0 1 0 0= Z

Design process

⚫ Derive the state-transition diagram (remember that Q denotes carry C)

⚫ Derive the truth table and Boolean expressions for F, G

29

Q X Y Z Qnext

q0 0 0 0 q0

q0 0 1 1 q0

q0 1 0 1 q0

q0 1 1 0 q1

q1 0 0 1 q0

q1 0 1 0 q1

q1 1 0 0 q1

q1 1 1 1 q1

Z = F X, Y, Q = X⊕ Y⊕ C

Qnext = G X, Y, Q = X ∙ Y + X⊕ Y ∙ Q

Combinational

Circuit G

D Flip-Flop

Combinational

Circuit F

Qnext

 2 /

X Y Q

ZCLK

q0 denotes C=0

q1 denotes C=1

Verification process
⚫ Given 𝑋3𝑋2𝑋1𝑋0 = 1011, 𝑌3𝑌2𝑌1𝑌0 = 1001, 𝐶0 = 0, verify the resulting

sequential circuit, noting that F: Z = X⊕ Y⊕ C; G: Qnext = X ∙ Y + X⊕Y ∙ Q

⚫ Step 1:

⚫ 𝑍0 = 𝑋0⨁𝑌0⨁𝐶0 = 1⨁1⨁0 = 𝟎

⚫ 𝐶1 = 𝑋0 ∙ 𝑌0 + 𝑋0⨁𝑌0 ∙ 𝐶0 = 1 ∙ 1 + 1⨁1 ∙ 0 = 𝟏

⚫ Step 2:

⚫ 𝑍1 = 𝑋1⨁𝑌1⨁𝐶1 = 1⨁0⨁1 = 𝟎

⚫ 𝐶2 = 𝑋1 ∙ 𝑌1 + 𝑋1⨁𝑌1 ∙ 𝐶1 = 1 ∙ 0 + 1⨁0 ∙ 1 = 𝟏

⚫ Step 3:

⚫ 𝑍2 = 𝑋2⨁𝑌2⨁𝐶2 = 0⨁0⨁1 = 𝟏

⚫ 𝐶3 = 𝑋2 ∙ 𝑌2 + 𝑋2⨁𝑌2 ∙ 𝐶2 = 0 ∙ 0 + 0⨁0 ∙ 1 = 𝟎

⚫ Step 4:

⚫ 𝑍3 = 𝑋3⨁𝑌3⨁𝐶3 = 1⨁1⨁0 = 𝟎

⚫ 𝐶4 = 𝑋3 ∙ 𝑌3 + 𝑋3⨁𝑌3 ∙ 𝐶3 = 1 ∙ 1 + 1⨁1 ∙ 0 = 𝟏

30

Combinational

Circuit G

D Flip-Flop

Combinational

Circuit F

Qnext

 2 /

X Y Q

ZCLK

F: Z = X⊕ Y⊕ C
G: Qnext = X ∙ Y + X⊕ Y ∙ Q

The final result is

𝑍3𝑍2𝑍1𝑍0 = 1011,

with 𝐶4 = 1 indicating

overflow

