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Outline

⚫ What is algorithmic thinking

⚫ Divide-and-conquer paradigm

⚫ Other interesting paradigms

⚫ Dynamic Programming

⚫ Randomization

⚫ Greedy***

⚫ P vs. NP

These slides acknowledge sources for additional data not cited in the textbook
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3. Paradigms other than divide-and-conquer

⚫ Dynamic programming

⚫ What if subproblems have overlapping elements

⚫ Randomization

⚫ Avoid being trapped in a bad situation

⚫ Greedy***

⚫ Try the obviously best from the possible next steps

⚫ Look at the stable match problem in detail
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3.3 The greedy strategy***

⚫ At a step in an algorithm, make 

the best choice from all possible 

choices

⚫ Suitable optimization problems 

have two features

⚫ After making a choice, the 

subproblem left is similar to the 

original problem

⚫ Solution is optimal, if choice + 

sub-solution is optimal

GreedyAlgorithm(Problem)

choice = GreedyChoice

subSolution = 

GreedyAlgorithm(subProblem)

Return combine(choice, subSolution)

KnapsackProblem
• Input: N items in a room where item i has value v[i] and 

weight w[i]; the burglar has a knapsack which can hold 

at most weight W

• Output: put items in the knapsack to maximize total 

value, with the constraint total weight < W

Initially, Knapsack is empty
Room = {1, 2, …, N}

Knapsack = 

totalWeight = 0;   totalValue = 0; 

GreedyBurglar(KnapsackProblem)
choice = Choose the most valuable item k left, 

subject to weight constraint W

totalValue += v[k]; totalWeight += w[k];

subSolution = GreedyBurglar(subKnapsackProblem)

Return combine(choice, subSolution)

subKnapsackProblem
The subproblem is the same as the original problem 

except that item k is already in knapsack. Thus, after first 

recursion,

Room = {1, 2, …, N} – {k}; Knapsack = {k}; 

totalWeight = v[k];   totalValue = v[k]



Can lead to optimal solution

KnapsackProblem
• Input: N items in a room where item i has value v[i] and 

weight w[i]; the burglar has a knapsack which can hold 

at most weight W

• Output: put items in the knapsack to maximize total 

value, with the constraint total weight < W

Initially, Knapsack is empty
Room = {1, 2, …, N}

Knapsack = 

totalWeight = 0;   totalValue = 0; 

GreedyBurglar(KnapsackProblem)
choice = Choose the most valuable item k left, 

subject to weight constraint W

totalValue += v[k]; totalWeight += w[k];

subSolution = GreedyBurglar(subKnapsackProblem)

Return combine(choice, subSolution)

subKnapsackProblem
The subproblem is the same as the original problem 

except that item k is already in knapsack. Thus, after first 

recursion,

Room = {1, 2, …, N} – {k}; Knapsack = {k}; 

totalWeight = v[k];   totalValue = v[k]

⚫ Knapsack Problem

⚫ Example: N=5, W=7

⚫ Initially, all items in Room

Item k v[k] w[k]

1 1 2

2 3 4

3 5 6

4 7 8

5 9 10

Optimal solution: item 3 in knapsack

Knapsack = {3}, 

totalValue = 5

totalWeight = 6



Does not always lead to optimal solution

KnapsackProblem
• Input: N items in a room where item i has value v[i] and 

weight w[i]; the burglar has a knapsack which can hold 

at most weight W

• Output: put items in the knapsack to maximize total 

value, with the constraint total weight < W

Initially, Knapsack is empty
Room = {1, 2, …, N}

Knapsack = 

totalWeight = 0;   totalValue = 0; 

GreedyBurglar(KnapsackProblem)
choice = Choose the most valuable item k left, 

subject to weight constraint W

totalValue += v[k]; totalWeight += w[k];

subSolution = GreedyBurglar(subKnapsackProblem)

Return combine(choice, subSolution)

subKnapsackProblem
The subproblem is the same as the original problem 

except that item k is already in knapsack. Thus, after first 

recursion,

Room = {1, 2, …, N} – {k}; Knapsack = {k}; 

totalWeight = v[k];   totalValue = v[k]

⚫ Knapsack Problem

⚫ Example: N=5, W=15

Item k v[k] w[k]

1 3 3

2 3 4

3 3 7

4 3 9

5 5 10

GreedyBurglar generates 

Knapsack = {5, 1}, 

totalValue = 8

totalWeight = 13

Optimal solution

Knapsack = {3, 4, 7}, 

totalValue = 9

totalWeight = 14



Does not always lead to optimal solution

0-1 KnapsackProblem
• Input: N items in a room where item i has value v[i] and 

weight w[i]; the burglar has a knapsack which can hold 

at most weight W

• Output: put items in the knapsack to maximize total 

value, with the constraint total weight < W

Initially, Knapsack is empty
Room = {1, 2, …, N}

Knapsack = 

totalWeight = 0;   totalValue = 0; 

GreedyBurglar(KnapsackProblem)
choice = Choose the most valuable item k left, 

subject to weight constraint W

totalValue += v[k]; totalWeight += w[k];

subSolution = GreedyBurglar(subKnapsackProblem)

Return combine(choice, subSolution)

subKnapsackProblem
The subproblem is the same as the original problem 

except that item k is already in knapsack. Thus, after first 

recursion,

Room = {1, 2, …, N} – {k}; Knapsack = {k}; 

totalWeight = v[k];   totalValue = v[k]

⚫ The above are called

0-1 Knapsack Problem

⚫ How about fractional 

knapsack problem?

⚫ A fraction of an item can be 

put in the knapsack

⚫ There is an greedy algorithm 

leading to optimal solution



Gale-Shapley algorithm for stable matching

The Sveriges Riksbank Prize in Economic Sciences in

Memory of Alfred Nobel 2012 was awarded jointly to

Alvin E. Roth and Lloyd S. Shapley "for the theory of

stable allocations and the practice of market design"

Alvin E. Roth Lloyd S. Shapley

2012 Nobel Prize in Economics

http://www.nobelprize.org/nobel_prizes/economics/laureates/2012/roth.html
http://www.nobelprize.org/nobel_prizes/economics/laureates/2012/shapley.html


Stable Marriage Problem
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Gale-Shapley Algorithm (1962)
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Gale-Shapley Algorithm (1962)
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Gale-Shapley Algorithm (1962)
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Stable Marriage Problem

⚫ Stable marriage may not be unique

⚫ Gale-Shapley algorithm 

⚫ Also call “men propose” algorithm

⚫ Can find a stable marriage

⚫ Good for men

⚫ Please think: why?

⚫ Applications

⚫ 2012 Nobel Prize in Economics


