'i P4 /’ WJV? CS101

"?"”}f,-mmw?ﬁ'. University of Chinese Academy of Science

Systems Thinking

Modularization-2:
Instruction Set and Instruction Pipeline

ZXu@ict.ac.cn
zhangjialin@ict.ac.cn

Outline

e Whatis systems thinking?
e Three objectives of systems thinking
e Abstraction

e Modularization
e Modularization and modules
e Combinational circuits
e Sequential circuits

e Instruction Set and Instruction Pipeline
e Design a simple instruction set
e Executing instructions by an instruction pipeline

e Software Stack
e Seamless transition

These slides acknowledge sources for additional data not cited in the textbook

4.4 Instruction set and instruction pipeline

e 1-minute quiz
e Q1. Combinational circuits vs. Boolean expressions

What are the relationships between combinational circuits and
Boolean expressions?

4.4 Instruction set and instruction pipeline

e 1-minute quiz
e Q1. Combinational circuits vs. Boolean expressions

What are the relationships between combinational circuits and
Boolean expressions?

e Al: Combinational circuits are equivalent to and implement Boolean
expressions

4.4 Instruction set and instruction pipeline

e 1-minute quiz
e Q1. Combinational circuits vs. Boolean expressions

What are the relationships between combinational circuits and
Boolean expressions?

e Al: Combinational circuits are equivalent to and implement Boolean
expressions

e Remarks
e For any combinational circuit, there is an equivalent Boolean
expression

e And vice versa
e Here, equivalence means they both have the same truth table

e A combinational circuit implements a Boolean expression
e By a logic diagram of gates

4.4 Instruction set and instruction pipeline

e 1-minute quiz
e Q2: Sequential circuits vs. automata
What are the relationships between sequential circuits and automata?

4.4 Instruction set and instruction pipeline

e 1-minute quiz
e Q2: Sequential circuits vs. automata
What are the relationships between sequential circuits and automata?

o AZ2: Sequential circuits are equivalent to and implement automata

4.4 Instruction set and instruction pipeline

e 1-minute quiz
e Q2: Sequential circuits vs. automata
What are the relationships between sequential circuits and automata?

o AZ2: Sequential circuits are equivalent to and implement automata

e Remarks
e For any sequential circuit, there is an equivalent automaton

e And vice versa

e Here, equivalence means they both have the same state transition table and initial
conditions

e A sequential circuit implements a automaton
e By alogic diagram of a state circuit and two combinational circuits

LK Combinational | Out(t)
—

n® State Circuit F
Combinational Circuit State(t)

Circuit G State(t+1)

4.4 Instruction set and instruction pipeline

e Automata (sequential circuits) e
are basic concepts, widely used in Instruction Stream y y
computers and application systems BREL e b o EX

e A processor (CPU) is implemented !
as a group of sequential circuits O
e Instruction pipeline is the basic hardware

abstraction to execute instructions 1 P p——
o Each stage of the instruction pipelineis ™. commana o Grage | Sty | Ceuit?
a sequential circuit
e Example

) i _ . A 3-stage instruction pipeline is
e The 3-stage instruction pipeline implemented as 3 sequential circuits

(when executing instruction MOV 0, R1)
e Instruction Fetch (IF) stage: IR < M[PC]
Fetch an instruction from the memory cell M[PC] to the Instruction Register of CPU

e Instruction Decode (ID): Control Signals = Decode(IR)
Decode the instruction to generate control signals

e Instruction Execute (EX): R1 < 0; PC «— PC+1
Execute the instruction according to the control signals, and increment PC

4.4 Instruction set and instruction pipeline

e I T
e Automata (sequential circuits) Istruetion Stream ! !
are basic concepts, widely usedin - LRI IR S e
computers and application systems / X
e A processor (CPU) is implemented oiwm \Gmtgtg omfxa)
as a group of seqguential circuits
e Instruction pipeline is the basic hardware
abstraction to execute instructions | ——— = s | g e 2
e Each stage of the instruction pipeline is Cret® | sute(ert)

a sequential circuit
. . . . A 3-stage instruction pipeline is
e The S_Stage Instruction plpe“ne can implemented as 3 sequential circuits

execute instructions in overlapped Practical CPUs have 5~31 pipeline stages
mode, thus increase clock frequency

e E.Q.,1GHz-> 3GHz

e See pipelining when discussing Amdahl’s law

4.4.1 Design the instruction set of FC

e The Fibonacci Computer (FC) executes only the following
code (shown in both Go and assembly language notations)
Recall Section 2.3 in textbook

fib[0]=0 MOV 0, R1
MOV R1, M[RO] //RO=12 initially
fib[1]=1 MOV 1, R1
MOV R1, M[RO+8]
fori:=2;i<51;i++{ MOV 2, R2 /li:=2
fib[i] = fib[i-1] + fib[i-2] MOV 0, R1 // label Loop

ADD M[R0O+R2*8-16], R1
ADD M[RO+R2*8-8], R1
MOV R1, M[RO+R2*8-0]

INC R2 I i++
CMP 51, R2 Ii<51?
} JL Loop Il if Yes, goto Loop

e Design an instruction set for FC

Any instruction consists of an opcode and one or more operands
e E.g.,, opcode operand operand
In mnemonics, e.g., MOV 0, R1

In binary, e.g., 000 000000 01

11

Design Process

e FC has a memory and five registers fib[0] = 0
FLAGS: CPU status register fib[1] = 1
e Holding status value of instruction execution, o .=2:i<51:i++{
such as if the result is overflow, zero, less fib[i] = fib[i-1] + fib[i-2]
than, etc.

e Only “less than” is used in this example

PC: program counter

e Holding the address of the next instruction to
be executed

RO, R1, and R2: general purpose registers
e Holding operands of instructions
e Determine the types of instructions
and decide the opcodes (one for a type)
Merge similar instructions into a type

E.g., There are three distinct instructions
moving an immediate value to a register
e MOV O, R1; MOV 1, R1; MOV 2, R2

e They belong to one type of instruction

MOV 0, R1

MOV R1, M[RO]

MOV 1, R1

MOV R1, M[RO+8]

MOV 2, R2

MOV 0, R1

ADD M[R0O+R2*8-16], R1
ADD M[R0O+R2*8-8], R1
MOV R1, M[RO+R2*8-0]
INC R2

CMP 51, R2

JL Loop

12

Design Process

FC has a memory and five registers TH=E VT
o FLAGS, PC, RO, R1, and R2 TR e —
Determine the types of instructions b it s izl MOV o et
and decide the opcodes (one for a type) 7DD MIROTRo-6.8] R1
o Merge similar instructions into a type P RO
o E.g., 3instructions move an immediate ; Sl
value to a register
e MOV 0, R1; MOV 1, R1; MOV 2, R2
e They belong to one type of instruction
There are six types of instructions
Instruction Type Opcode Semantics
MOV to Register 000 Assign an immediate value to a register
MOV to Memory 001 Assign the content of a register to M[Address]
ADD 010 R1 + M[Address] 2 R1
INC 011 R+1-> R (Risaregister)
CMP 100 Compare to a value, assign the result to FLAGS
JL 101 If FLAGS is '<' (less than), Loop - PC

13

Design Process

FC has a memory and five registers
e FLAGS, PC, RO, R1, and R2
Determine the types of instructions
and decide the opcodes

e Merge similar instructions into a type

e E.g., 3instructions move an immediate
value to a register
e MOV 0, R1; MOV 1, R1; MOV 2, R2
e They belong to one type of instruction

There are six types of instructions

fib[0] = 0
fib[1] = 1

fori:=2;i<51;i++{
fib[i] = fib[i-1] + fib[i-2]

MOV 0, R1
MOV R1, M[RO]

MOV 1, R1

MOV R1, M[RO+8]

MOV 2, R2

MOV 0, R1

ADD M[RO+R2*8-16], R1
ADD M[RO+R2*8-8], R1
MOV R1, M[RO+R2*8-0] v
INC R2

CMP 51, R2

JL Loop

Instruction Type Opcode Semantics
MOV to Register 000 Assign an immediate value to a register
MOV to Memory 001 Assign the content of a register to M[Address]
ADD 010 R1 + M[Address] 2 R1
INC 011 R+1-> R (Risaregister)
CMP 100 Compare to a value, assign the result to FLAGS
JL 101 If FLAGS is '<' (less than), Loop - PC

14

Design Process

FC has a memory and five registers
e FLAGS, PC, RO, R1, and R2
Determine the types of instructions
and decide the opcodes

e Merge similar instructions into a type

e E.g., 3instructions move an immediate
value to a register
e MOV 0, R1; MOV 1, R1; MOV 2, R2
e They belong to one type of instruction

There are six types of instructions

fib[0] = 0
fib[1] = 1

fori:=2;i<51;i++{
fib[i] = fib[i-1] + fib[i-2]

MOV 0, R1
MOV R1, M[RO]

MOV 1, R1

MOV R1, M[RO+8]

MOV 2, R2

MOV 0, R1

ADD M[RO+R2*8-16], R1/
ADD M[RO+R2*8-8], R1
MOV R1, M[RO+R2*8-0] v
INC R2

CMP 51, R2

JL Loop

Instruction Type Opcode Semantics
MOV to Register 000 Assign an immediate value to a register
MOV to Memory 001 Assign the content of a register to M[Address]
ADD 010 R1 + M[Address] 2> R1
INC 011 R+1-> R (Risaregister)
CMP 100 Compare to a value, assign the result to FLAGS
JL 101 If FLAGS is '<' (less than), Loop - PC

15

Design Process

FC has a memory and five registers
e FLAGS, PC, RO, R1, and R2
Determine the types of instructions
and decide the opcodes

e Merge similar instructions into a type

e E.g., 3instructions move an immediate
value to a register
e MOV 0, R1; MOV 1, R1; MOV 2, R2
e They belong to one type of instruction

There are six types of instructions

fib[0] = 0
fib[1] = 1

fori:=2;i<51;i++{
fib[i] = fib[i-1] + fib[i-2]

MOV 0, R1
MOV R1, M[RO]

MOV 1, R1

MOV R1, M[RO+8]

MOV 2, R2

MOV 0, R1

ADD M[RO+R2*8-16], R1/
ADD M[RO+R2*8-8], R1
MOV R1, M[RO+R2*8-0] v
INC R2

CMP 51, R2

JL Loop

Instruction Type Opcode Semantics
MOV to Register 000 Assign an immediate value to a register
MOV to Memory 001 Assign the content of a register to M[Address]
ADD 010 R1 + M[Address] 2> R1
INC 011 R+1-> R (Risaregister)
CMP 100 Compare to a value, assign the result to FLAGS
JL 101 If FLAGS is '<' (less than), Loop - PC

16

Design Process

FC has a memory and five registers
e FLAGS, PC, RO, R1, and R2
Determine the types of instructions
and decide the opcodes

e Merge similar instructions into a type

e E.g., 3instructions move an immediate
value to a register
e MOV 0, R1; MOV 1, R1; MOV 2, R2
e They belong to one type of instruction

There are six types of instructions

fib[0] = 0
fib[1] = 1

fori:=2;i<51;i++{
fib[i] = fib[i-1] + fib[i-2]

MOV 0, R1
MOV R1, M[RO]

MOV 1, R1

MOV R1, M[RO+8] +/

MOV 2, R2

MOV 0, R1

ADD M[RO+R2*8-16], R1/
ADD M[R0+R2*8-8], R1
MOV R1, M[RO+R2*8-0] v
INC R2

CMP 51, R2

JL Loop

Instruction Type Opcode Semantics
MOV to Register 000 Assign an immediate value to a register
MOV to Memory 001 Assign the content of a register to M[Address]
ADD 010 R1 + M[Address] 2 R1
INC 011 R+1-> R (Risaregister)
CMP 100 Compare to a value, assign the result to FLAGS
JL 101 If FLAGS is '<' (less than), Loop - PC

17

Design Process

FC has a memory and five registers fib[0] =0
e FLAGS, PC, RO, R1, and R2 fib[1]= 1
Determine the types of instructions bl = b1+ g2

and decide the opcodes
e Merge similar instructions into a type

e E.g., 3instructions move an immediate

value to a register

e MOV O, R1; MOV 1, R1; MOV 2, R2
e They belong to one type of instruction

There are six types of instructions

MOV 0, R1
MOV R1, M[RO]

MOV 1, R1

MOV R1, M[RO+8] +/

MOV 2, R2

MOV 0, R1

ADD M[RO+R2*8-16], R1/
ADD M[R0+R2*8-8], R1
MOV R1, M[RO+R2*8-0] v
INC R2

CMP 51, R2

JL Loop

Need 3 bits for the opcodes

Instruction Type Opcode Semantics
MOV to Register 000 Assign an immediate value to a register
MOV to Memory 001 Assign the content of a register to M[Address]
ADD 010 R1 + M[Address] 2 R1
INC 011 R+1-> R (Risaregister)
CMP 100 Compare to a value, assign the result to FLAGS
JL 101 If FLAGS is '<' (less than), Loop - PC

18

e FC has a memory and five registers

Design Process

fib[0] = O
fib[1] = 1

fori:=2;i<51;i++{
fib[i] = fib[i-1] + fib[i-2]

MOV 0, R1

MOV R1, M[RO]

MOV 1, R1

MOV R1, M[R0O+8]

MOV 2, R2

MOV 0, R1

ADD M[RO+R2*8-16], R1
ADD M[RO+R2*8-8], R1

MOV R1, M[RO+R2*8-0]

e FLAGS, PC, RO, R1, and R2 NG R2
e Determine the types of instructions VP 51 R2
} JL Loop
and decide the opcodes
For each opcode, determine its operands
e Assuming the instruction length = 11 bits In practice, assume 8, 16, 32 or 64 bits
e There are 3 data registers,
needing 2 bits Opcode Operand 1 Operand 2)
. Instruction
° Leave 6 b|tS for |mmed|ate Value 3-bit Immediate Value, 6-bit Register, 2-bit
, 000 000000 01 MOV 0, R1
+ + ;
e The base+index ?ffset mode 000 000001 o1 MOV L RI
e Address = RO + R2*| + J,_ where 000 000010 10 MOV 2, R2
RO, R2 are fixed 011 11111 10 INC R2
1=0,1,2,4,8 100 110011 10 CMP 51, R2
J=0,+4,+8,£16 101 00000101 JL Loop
e 5x7 =35 possible (I, J) pairs Opcode Operand 1 Operand 2 .
. Instruction
e 35<26 6 bits are enough 3-bit Memory Address, 6-bit Register, 2-bit
001 RO-+R2*0+0 01 MOV R1, M[RO]
Notes 001 RO+R2*0-+8 01 MOV R1, M[R0+8]
°® For INC R2’ Operand 1 can 001 RO+R2*0-0 01 MOV R1, M[RO+R2*8-0]
010 RO-+R2*8-8 01 ADD M[RO+R2*8-8], R1
be any value 010 RO-+R2*8-16 01 ADD M[RO+R2*8-16], R1
e JL has only one operand

19

4.4.2 Look inside a processor

e To see an example of executing instruction MOV 0, R1
e Dby a 3-stage instruction pipeline

e Instruction Fetch (IF):
e Instruction Decode (ID):
e Instruction Execute (EX):

e Internal components
not visible to user

IR: Instruction Register
holding the instruction
being executed

MAR: Memory Address
Register, holding the
memory address used
MDR: Memory Data
Register, holding the
data for a load or store

Controller: control circuit
to generate control signals

IRM[PC]
Signals = Decode(IR)
R1 « O; PC « PC+1

Memory

Svstem Software

Computer

51 MOV 0, R1

MOV R1, M[RO+R2#8-16]

1

il

FLAGS

Controller

\Processor (CPU)

/

20

Execution detalils

e After IF stage (micro operations O @ 3 @)

Memory

Computer

Svstem Software

RO

R1

R2

5] Movo, RIS L~ W ®

6 MOVRl,MthD ZL MOV 0, R1 \\PC i
MOR @ —=5—_|| Movo.Rr1

FLAGS

\Processor (CPU)

Controller

J

Data

Execution detalils

e After IF stage (micro operations O @ @ @)
e After ID stage (micro operation ®)

Memory

Svstem Software

<

Computer

MOV 0, R1 — |

MOV R1, M[RO+R2*8-16]

Data

MOV 0, R1

— 1]

Sy —5___|| MOVOR1

Controller

\Processor (CPU)

%lllllb

Signals

22

Execution detalils

o After EX stage (micro operations @O @)
o 0>R1; PC+1>PC

Memory Computer \
System Software
1
2 Ri| o O AL
31 ... MAR R2)
) ¢ | 5
5| MOV 0. RI
MOV R1. M[ROR2*8-16] [MOV 0. R1 PC IR
MDR 6 @ Movo,R1
Data FLAGS Controller
KProcessor (CPU)

J

23

4.5 Software Stack
on avon Neumann Computer

e Software is organized as a layered structure, called software stack
e Upper layers use lower layers, utilizing the modularization and reuse advantages

e Notes
e Middleware: between application software and system software
e Firmware stored in ROM (why), e.g., BIOS (the Basic Input/Output System)
e Software comes in source code form binary code form

Software Type Example
Scientific computing, Business
Application Software computing, Personal productivity Students
software; fib.dp.go, myPage.html
PDF, Search Engine, TikTok, WeChat use
Databases, MySQL, S_Oftware
Middleware Web servers, Nginx, WebServer.go in blue
Web Browsers Chrome, Safari an d
Infrastructure
Y Langugges, C, Go, JavaScript, Python create
Software Compilers, Shell
System Interpreters © software
Software . — . . d
Operating Systems Linux, Android, i0OS, Windows inre
Firmware BIOS
von Neumann Architecture
Hardware

