
Systems Thinking
Seamless Transition-1:

The four principles of seamless transition

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1

Outline

⚫ What is systems thinking?

⚫ Three objectives of systems thinking

⚫ Abstraction

⚫ Modularization

⚫ Seamless transition

⚫ The symphony of four principles

⚫ Yang’s cycle principle

⚫ Postel’s robustness principle

⚫ von Neumann’s exhaustiveness principle

⚫ Amdahl's law

⚫ Landscape of computing systems

These slides acknowledge sources for additional data not cited in the textbook

2

5.1 The symphony of four principles

⚫ 1-minute quiz

⚫ Q: Why can two students in San Jose and Shenzhen conduct a video

talk online correctly? Please give a specific principle.

⚫ Why trillions of instructions can be automatically executed in a fraction of a second,

across the globe, to produce correct computational results?

5.1 The symphony of four principles

⚫ 1-minute quiz

⚫ Q: Why and how can two students in San Jose and Shenzhen conduct

an online video talk correctly? Please give a specific principle.

⚫ Why trillions of instructions can be automatically executed in a fraction of a second,

across the globe, to produce correct computational results?

⚫ A. The computers involved in the video talk execute their computational

processes correctly and smoothly

⚫ More concretely, for each computational process involved, do a

computational induction (similar to mathematic induction)

⚫ Ensure that the first step is correctly identified

⚫ Ensure that any identified step (i.e., any single step) is correctly executed

⚫ For each step just finishing execution, ensure that the correct next step is identified

and the current step correctly transition to the next step

⚫ A step could be a program, a instruction, a gate, etc.

5.1 The symphony of four principles

⚫ 1-minute quiz

⚫ Q: Why and how can two students in San Jose and Shenzhen conduct

an online video talk correctly? Please give a specific principle.

⚫ Why trillions of instructions can be automatically executed in a fraction of a second,

across the globe, to produce correct computational results?

⚫ A. The computers involved in the video talk execute their computational

processes correctly and smoothly

⚫ More concretely, for each computational process involved, do a

computational induction (similar to mathematic induction), to ensure

correctness

⚫ Identify first step

⚫ Execute single step

⚫ Identify and transition to next step

• Yang’s cycle principle

• Postel’s robustness

principle

• von Neumann’s

exhaustiveness principle

5.1 The symphony of four principles

⚫ 1-minute quiz

⚫ Q: Why and how can two students in San Jose and Shenzhen conduct

an online video talk correctly? Please give a specific principle.

⚫ Why trillions of instructions can be automatically executed in a fraction of a second,

across the globe, to produce correct computational results?

⚫ A. The computers involved in the video talk execute their computational

processes correctly and smoothly

⚫ More concretely, for each computational process involved, do a

computational induction (similar to mathematic induction), to ensure

correctness

⚫ Identify first step

⚫ Execute single step

⚫ Identify and transition to next step

⚫ Also need to consider smoothly

• Yang’s cycle principle

• Postel’s robustness

principle

• von Neumann’s

exhaustiveness principle

• Amdahl's law

5.2 Yang’s cycle principle

⚫ In a multi-step computational process, how to

ensure the seamless transition from one step to the

next step?

⚫ Yang’s cycle principle
⚫ A system executes a computational process

in a sequence of cycles.

⚫ The system finishes one cycle and automatically

returns to the beginning (of the next cycle),

⚫ So that different computational processes

preserve their respective kinds.

⚫ Examples of different kinds, when step=instruction

▪ MOV to register instruction, MOV to memory instruction

▪ ADD instruction, INC instruction

▪ CMP instruction, JL instruction

English translation of 《太玄经·周首》adapted from

Nylan M. The Canon of Supreme Mystery by Yang Hsiung: A Translation with Commentary of the T'ai Hsuan Ching. SUNY Press, 1993.

《太玄经·周首》𝌇：
阳气周神而反乎始，
物继其汇。

Head Full Circle𝌇:

Yang qi comes full

circle. Divinely, it

returns to the beginning.

Things go on to

preserve their kinds.

扬雄，公元前2年
Yang Xiong, 2 BCE

Crucial details

⚫ Automatically return to the beginning of next cycle

⚫ Sequential circuit uses current state to generate next state

⚫ At step k, the system is in state Q, = output of the D flip-flops

⚫ Functionality of step k

▪ Use Q and current input In to generate Qnext and current output Out

⚫ When step k finishes, i.e., when CLK switches to the next clock cycle

▪ Qnext replaces Q to become the current state via the D flip-flops, and the system

returns to the beginning of step k + 1

8

Combinational

Circuit G

D Flip-Flops

Combinational

Circuit F
Qnext Q

OutCLK

In =

Data Inputs

Control Inputs

Crucial details

⚫ Automatically return to the beginning of next cycle

⚫ Sequential circuit uses current state to generate next state

⚫ At step k, the system is in state Q, = output of the D flip-flops

⚫ Functionality of step k

▪ Use Q and current input In to generate Qnext and current output Out

⚫ When step k finishes, i.e., when CLK switches to the next clock cycle

▪ Qnext replaces Q to become the current state via the D flip-flops, and the system

returns to the beginning of step k + 1

⚫ Use the same cycle mechanism to support diversity

⚫ By utilizing different control signals (control inputs)

9

Combinational

Circuit G

D Flip-Flops

Combinational

Circuit F
Qnext Q

OutCLK

In =

Data Inputs

Control Inputs

Cycles with different granularities

⚫ The task of sending a WeChat message involves the

executions of several programs, and consists of a

sequence of program cycles

⚫ Execution of a program cycle consists of the

executions of a sequence of instruction cycles

⚫ Execution of a instruction cycle consists of the

executions of a sequence of clock cycles

⚫ A 1-GHz processor has a clock cycle of 1 ns

⚫ At each clock cycle, the processor performs a state

transition of one or more sequential circuits

10

5.3 Postel’s robustness principle

⚫ Originally proposed by Jon Postel for the Internet

⚫ Has become a systems principle

⚫ When design, implement, and use a system, for every step,

⚫ Be tolerant of inputs and strict on outputs (宽进严出)

⚫ Be tolerant of inputs

⚫ System should still work when

inputs deviate somewhat from

“correct” values

⚫ Be strict on outputs

⚫ System should generate only

“correct” outputs, not deviating

from “correct” values

⚫ Implication

⚫ Accumulation of errors, drifts,

and distortions can often be

avoided

TCP implementations should follow

a general principle of robustness:

be conservative in what you do, be

liberal in what you accept from

others.

Jon Postel, 1980

Be strict in outputs, and be

tolerant of inputs

Step

An example

⚫ Consider gate G in the circuit of 5 NAND gates

⚫ It receives inputs from A, B, and outputs to H, I

⚫ All NAND gate have the same behavior and been implemented by a CMOS circuit

⚫ Naïve Design of the CMOS circuit without following Postel’s

robustness principle

⚫ There is not margin of gap near the threshold voltage Vth = 0.7 Volt

⚫ When A=HIGH=1.95 and B=LOW=0.55 Volt, Z should be HIGH>0.7 Volt

⚫ However, after B drifts +0.4 to reach 0.95 Volt, Z becomes LOW, an error

12

A

B

G

H

I

X=1.95

Y=0.55

0.95

1.52
Z=0.65

X Y

Y

X

Z

Vdd

Vss

Vdd = 2 Volt

Vss = 0 Volt

Vth = 0.7 Volt

Naïve Design

Logic 1: > 0.7 Volt

Logic 0: < 0.7 Volt

An example

⚫ Consider gate G in the circuit of 5 NAND gates

⚫ It receives inputs from A, B, and outputs to H, I

⚫ All NAND gate have the same behavior and been implemented by a CMOS circuit

⚫ Better design of the CMOS circuit following Postel’s robustness principle

⚫ A minimal gap of 1 volt at input side and 1.8 volt at the output side

⚫ Note that the output of B cannot be 0.55 Volt. It has to be < 01 Volt

⚫ Let B=LOW=0.07<0.1 Volt. Even after a drifting value of +0.4 Volt, G still sees

a LOW value, since B=0.47 Volt. Thus, Z is HIGH with Z > 1.9 Volt

13

A

B

G

H

I

X=1.95

Y=0.07

0.47

1.52
Z=1.96

X Y

Y

X

Z

Vdd

Vss

Better Design

For Input Voltages

Logic 1: > 1.5 Volt

Logic 0: < 0.5 Volt

For Output Voltages

Logic 1: > 1.9 Volt

Logic 0: < 0.1 Volt

Summary of Naïve Design

⚫ Assume X=HIGH and Y=LOW. Then Z should be HIGH

⚫ Could easily get the wrong result of Z = LOW

⚫ Why?

⚫ Treat inputs and outputs equally, and in a bad way

⚫ Both the input side and the output side

⚫ have 0 minimal gap between HIGH and LOW

⚫ have unsafe margins of 0.7 Volt for LOW and 1.3 Volt for HIGH

14

X Y

Y

X

Z

Vdd

Vss

2.0 Volt

0.7 Volt

0.0 Volt

HIGH

LOW

Possible

output

values of Z

Possible input

values of X

Possible input

values of Y

2.0 Volt

0.7 Volt

0.0 Volt

HIGH

LOW

Summary of Better Design

⚫ Assume X=HIGH and Y=LOW. Then Z will be HIGH

⚫ Tolerance on inputs
⚫ Input to a gate has a 0.5 Volt safe margin and a minimal gap of 1 Volt

⚫ Compared to Naïve Design: 0.7 and 1.3 unsafe margins and 0 minimal gap

⚫ Strictness on outputs
⚫ Output from a gate has a 0.1 Volt safe margin and a minimal gap of 1.8 Volt

⚫ Compared to Naïve Design: 0.7 and 1.3 unsafe margins and 0 minimal gap

15

X Y

Y

X

Z

Vdd

Vss

2.0 Volt

1.9 Volt

0.1 Volt

0.0 Volt

HIGH

Minimal

Gap 1.8 Volt

LOW

Possible

output

values of Z

Possible input

values of X

Possible output

values of Y

2.0 Volt

1.5 Volt

0.5 Volt

0.0 Volt

HIGH

Minimal

Gap 1.0 Volt

LOW

5.4 von Neumann’s exhaustiveness principle

⚫ Computer must be given instructions in absolutely

exhaustive detail when automatically solving a problem

⚫ In the quote, two terms have specific meanings

⚫ Operation = Problem-solving Task

⚫ E.g., solving a non-linear partial differential equation

⚫ Device = Computer

⚫ An automatic computing system
The instructions which govern

this operation must be given to

the device in absolutely

exhaustive detail. …

Once these instructions are

given to the device, it must be

able to carry them out completely

and without any need for further

intelligent human intervention.

John von Neumann, 1945

5.4 von Neumann’s exhaustiveness principle

⚫ Computer must be given instructions in absolutely

exhaustive detail when automatically solving a problem

⚫ 1-minute quiz

⚫ Q: How to cover “absolutely exhaustive

detail”?

The instructions which govern

this operation must be given to

the device in absolutely

exhaustive detail. …

Once these instructions are

given to the device, it must be

able to carry them out completely

and without any need for further

intelligent human intervention.

John von Neumann, 1945

5.4 von Neumann’s exhaustiveness principle

⚫ Computer must be given instructions in absolutely

exhaustive detail when automatically solving a problem

⚫ 1-minute quiz

⚫ Q: How to achieve “absolutely exhaustive

detail”?

⚫ The challenge:

⚫ how to use finite instructions to

achieve “absolutely exhaustive detail”?

⚫ List the types of instructions,

and give an example for each type

⚫ Program code, e.g., hide.go

The instructions which govern

this operation must be given to

the device in absolutely

exhaustive detail. …

Once these instructions are

given to the device, it must be

able to carry them out completely

and without any need for further

intelligent human intervention.

John von Neumann, 1945

5.4 von Neumann’s exhaustiveness principle

⚫ Computer must be given instructions in absolutely

exhaustive detail when automatically solving a problem

⚫ 1-minute quiz
⚫ Q: How to achieve “in absolutely exhaustive

detail”? List the types of instructions,

and give an example for each type

⚫ A: Instructions here mean not only

a computer’s instruction set,

but include the following

⚫ Program code, e.g., hide.go

⚫ Input data, e.g., Autumn.bmp

⚫ Library of functions, e.g., fmt.go

⚫ Context information, e.g., hide.go is /cs101/Prj2 in my Linux laptop

⚫ A: Answers to more fundamental questions

⚫ Where and what is the first instruction, when the computer power is turned on?

⚫ How to determine the next instruction to execute?

⚫ What types of exceptions are there, to normal execution of programs?

The instructions which govern

this operation must be given to

the device in absolutely

exhaustive detail. …

Once these instructions are

given to the device, it must be

able to carry them out completely

and without any need for further

intelligent human intervention.

John von Neumann, 1945

The first instruction to execute
when the computer power turns on

⚫ Example with an x86 processor

⚫ Where: the first instruction to execute is at memory

address 0xFFFFFFF0

⚫ What: a jump instruction, e.g., JUMP 000F0000

⚫ Address 000F0000 contains the entry instruction for the BIOS code

⚫ Why?

⚫ Computer starts by executing the BIOS firmware code

⚫ To initialize the computer and to load the operating system

⚫ Using a jump instruction upfront increases flexibility

⚫ E.g., if we want the computer to start by executing another firmware

code BIOS-2 at entry address 000FA000,then change

⚫ Address 0xFFFFFFF0 to hold JUMP 000FA000

20

Three ways to determine

the next instruction to execute

⚫ The earliest method is linear sequencing in Harvard

Mark I computer, the Automatic Sequence Controlled

Calculator

⚫ Instructions are linearly sequenced

⚫ There is no jump. Next instruction is located right

after current instruction on the instruction tape

⚫ Storing data and code separately

(This is called Harvard architecture)

⚫ Still widely used in the cache units of

modern computers. A processor has

separate instruction cache and data cache

⚫ In contrast, the Princeton architecture

uses a single cache or memory

to store both data and instructions

⚫ Modern computers use both

21

Three ways to determine

the next instruction to execute

⚫ The earliest method is linear sequencing in Harvard Mark I

computer

⚫ The ENIAC method

⚫ Every instruction holds the address of the next instruction

⚫ Used by the revised version of the ENIAC computer

⚫ Modern computers mostly use the PC mechanism: the

address of the next instruction to execute is stored in the

program counter (PC)

22

Opcode and operands of current instruction Address of next instruction

Deal with exceptions to normal execution

⚫ We have seen exceptions in programming, e.g.,

⚫ in the Text Hider project, the statement

p, _ := ioutil.ReadFile("./Autumn.bmp") should really be

p, error := ioutil.ReadFile("./Autumn.bmp")

if error != nil {…// put exception-handling code here}

… // no error; continue normal execution

23

Three types of exceptions are supported

by computer hardware

⚫ In normal execution (without exception), the current

instruction finishes and continue to execute the next

instruction

24

IF

EX

ID

IF

EX

ID

Current

Instruction

Next

Instruction

Time

5.4.1 Interrupt handling

⚫ When an interrupt occurs, e.g.,

⚫ When the user punches key ‘Y’ on the keyboard

while the processor is executing the instruction fetch stage

⚫ What should the processor do?

⚫ Should it immediately take an exception-handling action?

⚫ Should it finishes the current instruction first?

25

IF

EX

ID
Current

Instruction

Time

Interrupt

Occurs

Y

Interrupt handling

⚫ When an interrupt occurs, e.g.,

⚫ When the user punches key ‘Y’ on the keyboard

while the processor is executing the instruction decode stage

⚫ The processor finishes the current instruction and jumps to

an interrupt handling subprogram to handle the interrupt

26

IF

EX

ID

IF

EX

ID

Current

Instruction

First

Instruction

of Handler

Time

Interrupt

Occurs

Start to

handle

Y

Interrupt handling

⚫ When an interrupt occurs, e.g.,

⚫ When the user punches key ‘Y’ on the keyboard

while the processor is executing the instruction decode stage

⚫ The processor finishes the current instruction and jumps to

an interrupt handling subprogram to handle the interrupt

⚫ such as coping the punched key value to memory

27

IF

EX

ID

IF

EX

ID

Current

Instruction

Next

Instruction

Handler

Time

Interrupt

Occurs

Start to

handle

Y

Y

Interrupt handling

⚫ When an interrupt occurs, the processor finishes the current

instruction and jumps to an interrupt handling subprogram to

handle the interrupt

⚫ such as coping the punched key value to memory

⚫ Then, the processor resumes normal execution

⚫ by executing the original next instruction

28

IF

EX

ID

IF

EX

ID

Current

Instruction

Next

Instruction

Handler

Time

Interrupt

Occurs

Start to

handle

Resume

normal

execution

Y

Y

Interrupt handling

⚫ When an interrupt occurs, the processor finishes the current

instruction and jumps to an interrupt handling subprogram to

handle the interrupt

⚫ such as coping the punched key value to memory

⚫ Then, the processor resumes executing the next instruction

⚫ Q: how does the processor know the address of the next instruction?

29

IF

EX

ID

IF

EX

ID

Current

Instruction

Next

Instruction

Handler

Time

Interrupt

Occurs

Start to

handle

Resume

normal

execution

Y

Y

5.4.2 Hardware error handling

⚫ When a hardware error occurs, e.g.,

⚫ When the memory becomes faulty and generates a hardware error

exception

⚫ What should the processor do?
⚫ Should it immediately take an exception-handling action?

⚫ Should it finishes the current instruction first?

30

IF

EX

ID
Current

Instruction

Time

Exception

Occurs

Hardware error

⚫ When the memory becomes faulty and generates a hardware

error exception

⚫ Should the processor finishes the current instruction first?

⚫ No, because the IF stage cannot be finished

⚫ The instruction cannot be fetched from memory

31

IF

EX

ID
Current

Instruction

Time

Exception

Occurs

Hardware error

⚫ When the memory becomes faulty and generates a hardware

error exception

⚫ Should the processor immediately take an exception-handling action?

⚫ Yes, it executes an exception-handling sequence of steps without

depending on the memory

⚫ The system returns to some well-defined crash state

32

IF

EX

ID
Current

Instruction

Time

Exception

Occurs

5.4.3 Machine check

⚫ This is the "all other" exception, for exhaustiveness

⚫ Typically a unrecoverable hardware error

⚫ Example

⚫ When executing an exception-handling sequence of steps for the

memory fault, the sequence experiences another error

⚫ The system generates minimal diagnostic information and crashes

33

IF

EX

ID

An

instruction

in the

exception

handling

sequence

Time

Exception

Occurs

