
Systems Thinking
Modularization-2:

Instruction Set and Instruction Pipeline

zxu@ict.ac.cn

zhangjialin@ict.ac.cn

CS101

1

Outline

⚫ What is systems thinking?

⚫ Three objectives of systems thinking

⚫ Abstraction

⚫ Modularization

⚫ Modularization and modules

⚫ Combinational circuits

⚫ Sequential circuits

⚫ Instruction Set and Instruction Pipeline
⚫ Design a simple instruction set

⚫ Executing instructions by an instruction pipeline

⚫ Software Stack

⚫ Seamless transition

These slides acknowledge sources for additional data not cited in the textbook

2

4.4 Instruction set and instruction pipeline

⚫ 1-minute quiz

⚫ Q1: Combinational circuits vs. Boolean expressions

What are the relationships between combinational circuits and

Boolean expressions?

4.4 Instruction set and instruction pipeline

⚫ 1-minute quiz

⚫ Q1: Combinational circuits vs. Boolean expressions

What are the relationships between combinational circuits and

Boolean expressions?

⚫ A1: Combinational circuits are equivalent to and implement Boolean

expressions

4.4 Instruction set and instruction pipeline

⚫ 1-minute quiz

⚫ Q1: Combinational circuits vs. Boolean expressions

What are the relationships between combinational circuits and

Boolean expressions?

⚫ A1: Combinational circuits are equivalent to and implement Boolean

expressions

⚫ Remarks

⚫ For any combinational circuit, there is an equivalent Boolean

expression

⚫ And vice versa

⚫ Here, equivalence means they both have the same truth table

⚫ A combinational circuit implements a Boolean expression

⚫ By a logic diagram of gates

4.4 Instruction set and instruction pipeline

⚫ 1-minute quiz

⚫ Q2: Sequential circuits vs. automata

What are the relationships between sequential circuits and automata?

4.4 Instruction set and instruction pipeline

⚫ 1-minute quiz

⚫ Q2: Sequential circuits vs. automata

What are the relationships between sequential circuits and automata?

⚫ A2: Sequential circuits are equivalent to and implement automata

4.4 Instruction set and instruction pipeline

⚫ 1-minute quiz

⚫ Q2: Sequential circuits vs. automata

What are the relationships between sequential circuits and automata?

⚫ A2: Sequential circuits are equivalent to and implement automata

⚫ Remarks

⚫ For any sequential circuit, there is an equivalent automaton

⚫ And vice versa

⚫ Here, equivalence means they both have the same state transition table and initial

conditions

⚫ A sequential circuit implements a automaton

⚫ By a logic diagram of a state circuit and two combinational circuits

Combinational

Circuit G

State

Circuit

Combinational

Circuit F

State(t+1)

In(t)
State(t)

Out(t)CLK

4.4 Instruction set and instruction pipeline

⚫ Automata (sequential circuits)

are basic concepts, widely used in

computers and application systems

⚫ A processor (CPU) is implemented

as a group of sequential circuits

⚫ Instruction pipeline is the basic hardware

abstraction to execute instructions

⚫ Each stage of the instruction pipeline is

a sequential circuit

⚫ Example

⚫ The 3-stage instruction pipeline

(when executing instruction MOV 0, R1)

⚫ Instruction Fetch (IF) stage: IR  M[PC]

▪ Fetch an instruction from the memory cell M[PC] to the Instruction Register of CPU

⚫ Instruction Decode (ID): Control Signals = Decode(IR)

▪ Decode the instruction to generate control signals

⚫ Instruction Execute (EX): R1  0; PC  PC+1

▪ Execute the instruction according to the control signals, and increment PC

IF EXID

Instruction Stream

…… I4 I3 I2 I1

InIF(t) InID(t) InEX(t)

OutIF(t) OutID(t) OutEX(t)

Combinational

Circuit G

State

Circuit

Combinational

Circuit F

State(t+1)

In(t)
State(t)

Out(t)CLK

A 3-stage instruction pipeline is

implemented as 3 sequential circuits

4.4 Instruction set and instruction pipeline

⚫ Automata (sequential circuits)

are basic concepts, widely used in

computers and application systems

⚫ A processor (CPU) is implemented

as a group of sequential circuits

⚫ Instruction pipeline is the basic hardware

abstraction to execute instructions

⚫ Each stage of the instruction pipeline is

a sequential circuit

⚫ The 3-stage instruction pipeline can

execute instructions in overlapped

mode, thus increase clock frequency

⚫ E. g., 1 GHz → 3 GHz

⚫ See pipelining when discussing Amdahl’s law

IF EXID

Instruction Stream

…… I4 I3 I2 I1

InIF(t) InID(t) InEX(t)

OutIF(t) OutID(t) OutEX(t)

Combinational

Circuit G

State

Circuit

Combinational

Circuit F

State(t+1)

In(t)
State(t)

Out(t)CLK

A 3-stage instruction pipeline is

implemented as 3 sequential circuits

Practical CPUs have 5~31 pipeline stages

4.4.1 Design the instruction set of FC

⚫ The Fibonacci Computer (FC) executes only the following

code (shown in both Go and assembly language notations)

⚫ Recall Section 2.3 in textbook

⚫ Design an instruction set for FC

⚫ Any instruction consists of an opcode and one or more operands

⚫ E.g., opcode operand operand

⚫ In mnemonics, e.g., MOV 0, R1

⚫ In binary, e.g., 000 000000 01
11

fib[0] = 0 MOV 0, R1

MOV R1, M[R0] //R0=12 initially

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8]

for i := 2; i < 51; i++ { MOV 2, R2 // i:=2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1 // label Loop

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0]

INC R2 // i++

CMP 51, R2 // i < 51?

} JL Loop // if Yes, goto Loop

Design Process

⚫ FC has a memory and five registers

⚫ FLAGS: CPU status register

⚫ Holding status value of instruction execution,

such as if the result is overflow, zero, less

than, etc.

⚫ Only “less than” is used in this example

⚫ PC: program counter

⚫ Holding the address of the next instruction to

be executed

⚫ R0, R1, and R2: general purpose registers

⚫ Holding operands of instructions

⚫ Determine the types of instructions

and decide the opcodes (one for a type)

⚫ Merge similar instructions into a type

⚫ E.g., There are three distinct instructions

moving an immediate value to a register

⚫ MOV 0, R1; MOV 1, R1; MOV 2, R2

⚫ They belong to one type of instruction

12

fib[0] = 0 MOV 0, R1

MOV R1, M[R0]

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8]

for i := 2; i < 51; i++ { MOV 2, R2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0]

INC R2

CMP 51, R2

} JL Loop

Design Process

⚫ FC has a memory and five registers

⚫ FLAGS, PC, R0, R1, and R2

⚫ Determine the types of instructions

and decide the opcodes (one for a type)

⚫ Merge similar instructions into a type

⚫ E.g., 3 instructions move an immediate

value to a register

⚫ MOV 0, R1; MOV 1, R1; MOV 2, R2

⚫ They belong to one type of instruction

⚫ There are six types of instructions

13

fib[0] = 0 MOV 0, R1

MOV R1, M[R0]

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8]

for i := 2; i < 51; i++ { MOV 2, R2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0]

INC R2

CMP 51, R2

} JL Loop

Instruction Type Opcode Semantics

MOV to Register 000 Assign an immediate value to a register

MOV to Memory 001 Assign the content of a register to M[Address]

ADD 010 R1 + M[Address] → R1

INC 011 R + 1 → R (R is a register)

CMP 100 Compare to a value, assign the result to FLAGS

JL 101 If FLAGS is '<' (less than), Loop → PC

Design Process

⚫ FC has a memory and five registers

⚫ FLAGS, PC, R0, R1, and R2

⚫ Determine the types of instructions

and decide the opcodes

⚫ Merge similar instructions into a type

⚫ E.g., 3 instructions move an immediate

value to a register

⚫ MOV 0, R1; MOV 1, R1; MOV 2, R2

⚫ They belong to one type of instruction

⚫ There are six types of instructions

14

fib[0] = 0 MOV 0, R1

MOV R1, M[R0] 

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8] 

for i := 2; i < 51; i++ { MOV 2, R2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0] 

INC R2

CMP 51, R2

} JL Loop

Instruction Type Opcode Semantics

MOV to Register 000 Assign an immediate value to a register

MOV to Memory 001 Assign the content of a register to M[Address]

ADD 010 R1 + M[Address] → R1

INC 011 R + 1 → R (R is a register)

CMP 100 Compare to a value, assign the result to FLAGS

JL 101 If FLAGS is '<' (less than), Loop → PC

Design Process

⚫ FC has a memory and five registers

⚫ FLAGS, PC, R0, R1, and R2

⚫ Determine the types of instructions

and decide the opcodes

⚫ Merge similar instructions into a type

⚫ E.g., 3 instructions move an immediate

value to a register

⚫ MOV 0, R1; MOV 1, R1; MOV 2, R2

⚫ They belong to one type of instruction

⚫ There are six types of instructions

15

fib[0] = 0 MOV 0, R1

MOV R1, M[R0] 

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8] 

for i := 2; i < 51; i++ { MOV 2, R2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0] 

INC R2

CMP 51, R2

} JL Loop

Instruction Type Opcode Semantics

MOV to Register 000 Assign an immediate value to a register

MOV to Memory 001 Assign the content of a register to M[Address]

ADD 010 R1 + M[Address] → R1

INC 011 R + 1 → R (R is a register)

CMP 100 Compare to a value, assign the result to FLAGS

JL 101 If FLAGS is '<' (less than), Loop → PC

Design Process

⚫ FC has a memory and five registers

⚫ FLAGS, PC, R0, R1, and R2

⚫ Determine the types of instructions

and decide the opcodes

⚫ Merge similar instructions into a type

⚫ E.g., 3 instructions move an immediate

value to a register

⚫ MOV 0, R1; MOV 1, R1; MOV 2, R2

⚫ They belong to one type of instruction

⚫ There are six types of instructions

16

fib[0] = 0 MOV 0, R1

MOV R1, M[R0] 

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8] 

for i := 2; i < 51; i++ { MOV 2, R2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0] 

INC R2 

CMP 51, R2

} JL Loop

Instruction Type Opcode Semantics

MOV to Register 000 Assign an immediate value to a register

MOV to Memory 001 Assign the content of a register to M[Address]

ADD 010 R1 + M[Address] → R1

INC 011 R + 1 → R (R is a register)

CMP 100 Compare to a value, assign the result to FLAGS

JL 101 If FLAGS is '<' (less than), Loop → PC

Design Process

⚫ FC has a memory and five registers

⚫ FLAGS, PC, R0, R1, and R2

⚫ Determine the types of instructions

and decide the opcodes

⚫ Merge similar instructions into a type

⚫ E.g., 3 instructions move an immediate

value to a register

⚫ MOV 0, R1; MOV 1, R1; MOV 2, R2

⚫ They belong to one type of instruction

⚫ There are six types of instructions

17

fib[0] = 0 MOV 0, R1

MOV R1, M[R0] 

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8] 

for i := 2; i < 51; i++ { MOV 2, R2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0] 

INC R2 

CMP 51, R2 

} JL Loop

Instruction Type Opcode Semantics

MOV to Register 000 Assign an immediate value to a register

MOV to Memory 001 Assign the content of a register to M[Address]

ADD 010 R1 + M[Address] → R1

INC 011 R + 1 → R (R is a register)

CMP 100 Compare to a value, assign the result to FLAGS

JL 101 If FLAGS is '<' (less than), Loop → PC

Design Process

⚫ FC has a memory and five registers

⚫ FLAGS, PC, R0, R1, and R2

⚫ Determine the types of instructions

and decide the opcodes

⚫ Merge similar instructions into a type

⚫ E.g., 3 instructions move an immediate

value to a register

⚫ MOV 0, R1; MOV 1, R1; MOV 2, R2

⚫ They belong to one type of instruction

⚫ There are six types of instructions

18

fib[0] = 0 MOV 0, R1

MOV R1, M[R0] 

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8] 

for i := 2; i < 51; i++ { MOV 2, R2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0] 

INC R2 

CMP 51, R2 

} JL Loop 

Instruction Type Opcode Semantics

MOV to Register 000 Assign an immediate value to a register

MOV to Memory 001 Assign the content of a register to M[Address]

ADD 010 R1 + M[Address] → R1

INC 011 R + 1 → R (R is a register)

CMP 100 Compare to a value, assign the result to FLAGS

JL 101 If FLAGS is '<' (less than), Loop → PC

Need 3 bits for the opcodes

Design Process

⚫ FC has a memory and five registers

⚫ FLAGS, PC, R0, R1, and R2

⚫ Determine the types of instructions

and decide the opcodes

⚫ For each opcode, determine its operands

⚫ Assuming the instruction length = 11 bits In practice, assume 8, 16, 32 or 64 bits

⚫ There are 3 data registers,

needing 2 bits

⚫ Leave 6 bits for immediate value

⚫ The base+index+offset mode
⚫ Address = R0 + R2*I + J, where

R0, R2 are fixed

I = 0, 1, 2, 4, 8

J = 0,  4,  8,  16

⚫ 57 = 35 possible (I, J) pairs

⚫ 35<26, 6 bits are enough

⚫ Notes

⚫ For INC R2, operand 1 can

be any value

⚫ JL has only one operand
19

fib[0] = 0 MOV 0, R1

MOV R1, M[R0]

fib[1] = 1 MOV 1, R1

MOV R1, M[R0+8]

for i := 2; i < 51; i++ { MOV 2, R2

fib[i] = fib[i-1] + fib[i-2] MOV 0, R1

ADD M[R0+R2*8-16], R1

ADD M[R0+R2*8-8], R1

MOV R1, M[R0+R2*8-0]

INC R2

CMP 51, R2

} JL Loop

Opcode

3-bit

Operand 1

Immediate Value, 6-bit

Operand 2

Register, 2-bit
Instruction

000 000000 01 MOV 0, R1

000 000001 01 MOV 1, R1

000 000010 10 MOV 2, R2

011 111111 10 INC R2

100 110011 10 CMP 51, R2

101 00000101 JL Loop

Opcode

3-bit

Operand 1

Memory Address, 6-bit

Operand 2

Register, 2-bit
Instruction

001 R0+R2*0+0 01 MOV R1, M[R0]

001 R0+R2*0+8 01 MOV R1, M[R0+8]

001 R0+R2*0-0 01 MOV R1, M[R0+R2*8-0]

010 R0+R2*8-8 01 ADD M[R0+R2*8-8], R1

010 R0+R2*8-16 01 ADD M[R0+R2*8-16], R1

4.4.2 Look inside a processor

⚫ To see an example of executing instruction MOV 0, R1

⚫ by a 3-stage instruction pipeline

⚫ Instruction Fetch (IF): IRM[PC]

⚫ Instruction Decode (ID): Signals = Decode(IR)

⚫ Instruction Execute (EX): R1  0; PC  PC+1

⚫ Internal components
not visible to user

⚫ IR: Instruction Register

holding the instruction

being executed

⚫ MAR: Memory Address

Register, holding the

memory address used

⚫ MDR: Memory Data

Register, holding the

data for a load or store

⚫ Controller: control circuit

to generate control signals

20

Execution details

⚫ After IF stage (micro operations ①②③④)

21

System Software

Data

12

1

2

ALU

Controller

Processor (CPU)

Memory Computer

FLAGS

MOV 0, R1

5

MOV 0, R1

5

MAR

R0

R1

R2

PC IR

MDR

0

1

2

3 ……

4

5 MOV 0, R1

6 MOV R1, M[R0+R2*8-16]

①

②

③
④

Execution details

⚫ After IF stage (micro operations ①②③④)

⚫ After ID stage (micro operation ⑤)

22

System Software

Data

12

1

2

ALU

Controller

Processor (CPU)

Memory Computer

FLAGS

MOV 0, R1

5

MOV 0, R1

5

MAR

R0

R1

R2

PC IR

MDR

0

1

2

3 ……

4

5 MOV 0, R1

6 MOV R1, M[R0+R2*8-16]

①

②

③
④

⑤

Signals

Execution details

⚫ After EX stage (micro operations ①②)

⚫ 0→R1; PC+1→PC

23

4.5 Software Stack

on a von Neumann Computer
⚫ Software is organized as a layered structure, called software stack

⚫ Upper layers use lower layers, utilizing the modularization and reuse advantages

⚫ Notes

⚫ Middleware: between application software and system software

⚫ Firmware stored in ROM (why), e.g., BIOS (the Basic Input/Output System)

⚫ Software comes in source code form binary code form

24

Software Type Example

Application Software

Scientific computing, Business

computing, Personal productivity

software; fib.dp.go, myPage.html

PDF, Search Engine, TikTok, WeChat

Infrastructure

Software

Middleware

Databases,

Web servers,

Web Browsers

MySQL,

Nginx, WebServer.go

Chrome, Safari

System

Software

Languages,

Compilers,

Interpreters

C, Go, JavaScript, Python

Shell

Operating Systems Linux, Android, iOS, Windows

Firmware BIOS

von Neumann Architecture

Hardware

Students

use

software

in blue

and

create

software

in red

