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Outline

⚫ What is algorithmic thinking

⚫ Knuth's characterization

⚫ Sorting: problem and algorithms

⚫ Asymptotic notations

⚫ Divide-and-conquer paradigm

⚫ Other interesting paradigms

⚫ P vs. NP

These slides acknowledge sources for additional data not cited in the textbook

2



1. What is algorithmic thinking?

⚫ A way of thinking to solving problems smartly by

⚫ designing and using algorithms

⚫ looking at the world through an algorithmic lens

⚫ A smart way to study computational problems and algorithms
Problem Name (e.g., the sorting problem)

⚫ Input: specifying the given input data.

⚫ Output: specifying the desired output data.

Algorithm Name (e.g., bubble sort)

⚫ Input: specifying the given input data.

⚫ Output: specifying the desired output data.

⚫ Steps: specifying the sequence of computational steps.

⚫ What does smart mean?
⚫ A smart way to define algorithms. Knuth’s five-point definition

⚫ A smart way to measure algorithms. 𝒐,𝑶, 𝛀,𝚯 ; P vs. NP

⚫ Smart ways to design algorithms. Algorithmic paradigms

⚫ Smart variations to adapt for problem nuances. E.g., how to balance all parts
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1.1 What are algorithms

⚫ Derived from Algoritmi de numero Indorum
⚫ Treatise by Persian mathematician Al-Khwarizmi 

(780-850 CE)

⚫ Knuth’s characterization (1968)
An algorithm is a finite set of rules specifying a sequence of 

computational steps for solving a given problem, with the 

following five properties. 

⚫ Finiteness. An algorithm must always terminate after a finite 

number of steps.

⚫ Definiteness. Each step of an algorithm must be precisely defined, 

that is, the actions to be carried out must be rigorously and 

unambiguously specified.

⚫ Input. An algorithm has zero or more inputs, given before the 

algorithm begins or during the algorithm's execution. 

⚫ Output. An algorithm has one or more outputs, which relate to the 

inputs.

⚫ Effectiveness. Every operation of an algorithm must be sufficiently 

rudimentary, such that in principle, the operation can be done by a 

human using paper and pencil, in finite time.

https://www-cs-faculty.stanford

.edu/~knuth/alk3.gif

https://www-cs-faculty.stanford

.edu/~knuth/zoomlunch.jpg (2020)



Algorithm vs. non-algorithm

The common divisor (CD) problem

⚫ Input: Two positive integers x and y.

⚫ Output: A positive integer z such that x % z = 0 and y % z = 0.

Method 1 (CD-1), randomly pick and check

⚫ Input: Two positive integers x and y.

⚫ Output: A positive integer z such that x % z = 0 and y % z = 0.

⚫ Steps: 

while true

randomly pick a positive integer z 

if (x % z == 0) and (y % z == 0) then halt

⚫ CD-1 is not an algorithm, as it violates some of the 5 properties

⚫ May never stop, violating the finiteness property

⚫ “Randomly picking a positive integer" is not sufficiently rigorous or unambiguous, 

violating the definiteness property

⚫ How does one do it from the set of infinitely many positive integers?
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Algorithm vs. non-algorithm

The common divisor (CD) problem

⚫ Input: Two positive integers x and y.

⚫ Output: A positive integer z such that x % z = 0 and y % z = 0.

Method 2 (CD-2): Euclid's algorithm

⚫ Input: Two positive integers x and y.

⚫ Output: A positive integer z such that x % z = 0 and y % z = 0.

⚫ Steps: 

while y  0

x, y = y, x % y

z = x

⚫ Exercises

⚫ Show that CD-2 is indeed an algorithm, because it satisfies all 5 properties in 

Knuth’s characterization

⚫ Show that given two inputs x=36 and y=24, Euclid's algorithm finds the greatest 

common divisor of x and y, i.e., gcd(x, y)=12

6

Divisors of x = 36

36, 18,12, 9, 6, 4, 3, 

2, 1

Divisors of y = 24

12, 8, 6, 4, 3, 2, 1

Common divisors

of x = 36 and y = 24

12, 6, 4, 3, 2, 1

GCD of 

x = 36 and y = 24

12



1.2 Example: the sorting problem

⚫ Task: given 𝑛 integers, sort them in order from 

smallest to largest

⚫ Think: when you play cards, how do you arrange 

your cards?

⚫ Draw the cards one by one, and insert them into the 

arranged cards each time

⚫ Sort by suit first, and then sort each suit 

⚫ Other methods?



Bubble-sort
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Bubble sort meets Knuth’s characterization

⚫ Finiteness: the double loop always terminates

⚫ Definiteness: the meaning of each step is clear

⚫ Input: array A (of length n) to be sorted

⚫ Output: the sorted array A, sharing space with Input

⚫ Effectiveness: basic operations are comparison and swap

⚫ Both operations are sufficiently rudimentary

⚫ People can use pen and paper to do these operations accurately
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Input: An array A of length 𝑛 to be sorted, e.g., A=[6, 2, 4, 1, 5, 9]. 

Output: A sorted array A, e.g., A=[1, 2, 4, 5, 6, 9]. 

Steps:  

for i = 1 to n-1  // for each round 

for j = 1 to n-i  // compare every adjacent pair 

       if A [j] > A [j + 1] then exchange A [j] with A [j + 1]; 



Bubble-sort

⚫ Need 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑛 × (𝑛 − 1)/2
comparison operations

⚫ In the worst case, need 𝑛 × (𝑛 − 1)/2 swap 

operations

⚫ 𝑛, 𝑛 − 1,… , 2, 1

⚫ Can we improve the algorithm?



Quick-sort
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Step 1: random choose one element as the key

Step 2: compare other elements with the key,

and divide all elements into two parts
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Step 3: sort each part recursively

 

p, r = n, 1 

QuickSort(A, p, r) 

If p < r 

1. q = Partition(A, p, r) 

2. QuickSort(A, p, q-1) 

3. QuickSort(A, q+1, r) 



Quick-sort

6 1 8 2 3 9105

Key element: 6 6 1 8 2 3 9105

6 1 3 2 8 9105

5 1 3 2 8 9106



Quick-sort

⚫ How many comparison operations do we need?

⚫ Worst case: 𝑛 × (𝑛 − 1)/2
⚫ When?

⚫ Average case: ?

 

p, r = n, 1 

QuickSort(A, p, r) 

If p < r 

1. q = Partition(A, p, r) 

2. QuickSort(A, p, q-1) 

3. QuickSort(A, q+1, r) 



Human sorter

⚫ Design a team computer for quicksort

⚫ Each student needs to design their own human 

sorter

⚫ After discussion and evaluation, each team chooses 

one design, and runs it in reality



Thinking problem

⚫ Pancake Sorting problem

⚫ Sort a disordered stack of 

pancakes in order of size 

when a spatula can be 

inserted at any point in the 

stack and used to flip all 

pancakes above it.

⚫ Goal: minimize the number 

of flip operations



Pancake Sorting problem

⚫ 2, 1, 4, 5, 3

⚫ 5, 4, 1, 2, 3

⚫ 3, 2, 1, 4, 5

⚫ 1, 2, 3, 4, 5


